

Hydrogeological Atlas of Rajasthan

Gambhir River Basin

Hydrogeological Atlas of Rajasthan

Gambhir River Basin

Contents:

List of Plates	Title	Page No.
Plate I	Administrative Map	2
Plate II	Topography	4
Plate III	Rainfall Distribution	4
Plate IV	Geological Map	6
Plate V	Geomorphological Map	6
Plate VI	Aquifer Map	8
Plate VII	Location of Ground Water Monitoring Stations	8
Plate VIII	Location of Exploratory Wells	10
Plate IX	Depth to Water Level (Pre-Monsoon 2010)	10
Plate X	Water Table Elevation (Pre-Monsoon 2010)	12
Plate XI	Water Level Fluctuation (Pre-Post Monsoon 2010)	12
Plate XII	Electrical Conductivity Distribution (Average Pre- Monsoon 2005-09)	14
Plate XIII	Chloride Distribution (Average Pre-Monsoon 2005-09)	14
Plate XIV	Fluoride Distribution (Average Pre-Monsoon 2005-09)	16
Plate XV	Nitrate Distribution (Average Pre-Monsoon 2005-09)	16
Plate XVI	Depth to Bedrock	18
Plate XVII	Map of Unconfined Aquifer	18
Plate XVIII	Index Map Showing Alignment of Cross Sections	20
Plate XIX	Cross Section Along A-A'	22
Plate XX	Cross Section Along B-B'	22
Plate XXI	Cross Section Along C-C'	24
Plate XXII	Cross Section Along D-D'	24
Plate XXIII	3D Model	26
	Glossary of terms	27

Location:

Gambhir River Basin is located in northeastern part of Rajasthan. It stretches between 26° 16' 07.47" to 27° 05' 23.88"North latitude and 76° 31' 56.35" to 77° 52' 25.31" East longitudes. It is bounded by the Banganga river basin in the north, Banas river basin in the south west, Chambal and Parbati in the southeast; Uttar Pradesh state constitutes part of the boundary in the northeast. The Basin extends over parts of Bharatpur, Dausa, Dhaulpur, Karauli and Sawai Madhopur Districts. Gambhir is a small river basin and its approximate total catchment area is 4,316 km².

River Gambhir originates in the hills near Karauli village in Sawai Madhopur District. It flows from south to north up to Kanjoli village (Toda Bhim), then towards northeast up to village Mertha of Roopbas Block, before entering Uttar Pradesh. The river again enters Rajasthan near Catchapaura village in Dhoulpur District and forms the boundary between UP and Rajasthan. It then enters Mainpuri District in UP to finally joins River Yamuna. The river is ephemeral, but becomes perennial after its confluence with the Parbati, outside Dhoulpur District. The total length of the river in Rajasthan is 288 km. important tributaries of the Gambhir are Sesa, and Kher.

Administrative Set-up:

Gambhir river basin extends over parts of Bharatpur, Dausa, Dhaulpur, Karauli and Sawai Madhopur Districts and divided into 13 Blocks and encompassing 896 towns and villages.

S. No. District Name		Area	% of Basin	Total Number of	Total Number of
		(sq km)	Area	Blocks	Towns and Villages
1	Bharatpur	1,210.5	28.0	3	279
2	Dausa	100.1	2.3	2	27
3	Dhaulpur	321.6	7.5	2	105
4	Karauli	2,426.5	56.2	5	450
5	Sawai Madhopur	257.6	6.0	1	35
Total		4,316.3	100.0	13	896

Climate:

Gambhir basin is small and falls within Sub-Humid climatic region receiving moderate to good rainfall resembling more to Uttar Pradesh than to semi-arid Rajasthan. It is very cold from November to February while warming up between March-April and the months of May-June are very hot when temperatures reaches high of 49-50°C. The mean annual rainfall over Gambhir river basin was 616 mm, of which around 95% is received during the Monsoon months of June-September.

European Union State Partnership Programme

The central and northeastern parts of the Basin falling within Sawai Madhopur, western parts of Karauli district and in Bharatpur and Dhaulpur districts is marked by undulating plains.

Areas around Bayana, southwestern part of Dausa (within basin) and Karauli are hilly which belong to the Aravali range. Plate II depicts the topography of the basin.

District Name	Min. Elevation (m amsl)	Max. Elevation (m amsl)
Bharatpur	157.0	390.0
Dausa	203.5	491.4
Dhaulpur	156.5	295.3
Karauli	200.5	492.6
Sawai Madhopur	224.7	362.0

Table: District wise minimum and maximum elevation

RAINFALL

Perusal of Plate III reveals the distribution of total annual rainfall in the basin which seem to have ranged from 600-800mm in the year 2010. The northeastern parts of the basin adjoining Uttar Pradesh had received highest rainfall of the basin i.e., in the range of 900-100mm whereas western part around Nadbai in Karauli district had received least in the basin which ranged between 500-600mm of total annual rainfall.

S. No.	Rain gauge Stations	Total Monsoon Rainfall (mm)	Total Non-Monsoon Rainfall (mm)	Total Annual Rainfall (mm)
1	Baseri	442.0	126.0	568.0
2	Bayana	618.0	115.0	733.0
3	Hindon	592.0	38.0	630.0
4	Nadoti	474.0	86.0	560.0
5	Roopwas	840.0	65.0	905.0

Table: District wise total annual rainfall (based on year 2010 meteorological station recordings (http://waterresources.rajasthan.gov.in)

Admin Boundary:		Elev	ration(m amsl):
District Headquarter	۲	•	494 m
Block Headquarter	۲		450 m
State Boundary			
District Boundary			400 m
Block Boundary		•	
River Basin Boundary	\sim	-	350 m
Water Bodies:			
River / Streams	7~		300 m
Ponds / Reservoirs			250 m
		•	
			200 m
			158 m

The Gambhir river basin is covered mainly by rocks belonging to the oldest (Bhilwara Super Group, Archean Period) to the youngest rocks (Aeolian and Fluvial deposits of Recent to

Sub-Recent age). Delhi Super Group is represented both by Ajabgarh and Alwar Groups whereas Vindhyan Super Group rocks belong to Bhander, Rewa, Kaimur and Sand Group.

Age	Super Group	Group/Formation	Rock Types	
Recent to Sub-Recent			Alluvium and blown sand, clay, loose sand	
		Unconformity		
	Upper Vindhyan	Bhander	Sandstone, Shale, Limestone	
Upper Precambrian		Rewa	Sandstone, Shale	
10 Lower Precambrian	Lower Vindhyan	Kaimur	Conglomerate, sandstone	
Lower Frecambrian		Sand	Sandstone, Shale, Limestone	
		Unconformity		
		Ajabgarh	Quartzite, Schist, Phyllite	
Proterozoic	Delhi	Unconformity		
		Alwar	Quartzite, schist	
		Unconformity		
Archean	Bhilwara	Mangalwar Complex	Amphibolites, greywacke, quartzite, marble,	

GEOMORPHOLOGY

Origin	Landform Unit	Description
Aeolian	Sandy Plain	Formed of aeolian activity, wind-blown sand with gentle sloping to undulating plain, comprising of coarse sand, fine sand, silt and clay.
	Buried Pediment	Pediment covers essentially with relatively thicker alluvial, colluvial or weathered materials.
Depudational	Intermontane Valley	Depression between mountains, generally broad & linear, filled with colluvial deposits.
Denudational	Pediment	Broad gently sloping rock flooring, erosional surface of low relief between hill and plain, comprised of varied lithology, criss-crossed by fractures and faults.
	Dissected Plateau	Plateau, criss-crossed by fractures forming deep valleys.
	Alluvial Plain	Mainly undulating landscape formed due to fluvial activity, comprising of gravels, sand, silt and clay. Terrain mainly undulating, produced by extensive deposition of alluvium.
Fluvial	Alluvial Plain (Sandy)	Flat to gentle undulating plain formed due to fluvial activity, mainly consists of gravels, sand, silt and clay with unconsolidated material of varying lithology, predominantly sand along river.
	Flood Plain	The surface or strip of relatively smooth land adjacent to a river channel formed by river and covered with water when river over flows its bank. Normally subject to periodic flooding.
	Valley Fill	Formed by fluvial activity, usually at lower topographic locations, comprising of boulders, cobbles, pebbles, gravels, sand, silt and clay. The unit has consolidated sediment deposits.
	Ravine	Small, narrow, deep, depression, smaller than gorges, larger than gulley, usually carved by running water.
	Water logged/ Wetland	Area submerged in water or area having very shallow water table. So that it submerges in water during rainy season.
Structural	Plateau	Formed over varying lithology with extensive, flat, landscapes, bordered by escarpment on all sides. Essentially formed horizontally layered rocky marked by extensive flat top and steep slopes. It may be criss-crossed by lineament.
Hills		Hills and intervening valleys in hilly areas

Source : District Resource Map of Rajasthan - GSI

Fault

Source : Ground Water Atlas of Rajasthan - SRSAC & GWD, Rajasthan

Coverage wise, the alluvium forms the predominant aquifer type contributing to more than 66% of aquifers in the basin. This is followed by Sandstones of Vindhyan Super Group that is close to 28% of the basin. Quartzites constitute small part of the basin's aquifer area within its weathered and fractured zone.

Aquifer in Potential Zone	Area (sq km)	% of Basin Area	Description of the unit/Occurrence
Older Alluvium	2,867.4	66.4	This litho unit comprises of mixture of heterogeneous fine to medium
Sandstana	1 100 F	27.0	Fine to modium grained, red colour and compact and at places
Sandstone	1,199.5	27.8	Fine to medium grained, red colour and compact and at places.
	1/15 7	3.1	Medium to coarse grained and varies from feldspathic grit to sericitic
Quartzite	145.7	5.4	quartzite.
Non Potential Zone (Hills)	103.7	2.4	Hills and reserve forests
TOTAL	4,316.3	100.0	

LOCATION OF GROUNDWATER MONITORING WELLS

The basin has a well distributed network of groundwater monitoring stations (140) in the basin owned by RGWD (107) and CGWB (33). Apart from existing network, it has been

recommended that 197 wells be added to strengthen the network for a more effective ground water level and quality in the basin.

District Name	Existing Monit	; Ground oring Sta	Water tions	Recommended Additional Ground Water Monitoring Stations		
	CGWB	RGWD	Total	Water Level	Water quality	
Bharatpur	12	43	55		40	
Dausa	2	9	11		4	
Dhaulpur	2	15	17		9	
Karauli	15	36	51	7	65	
Sawai Madhopur	2	4	6		9	
Total	33	107	140	7	127	

LOCATION OF EXPLORATORY WELLS

GAMBHIR RIVER BASIN

In all there are 78 exploratory wells present in the Gambhir river basin drilled in the past by RGWD (46) and CGWB (32) that form basis for delineation of sub-surface aquifers and

understanding their distribution.

District Norse	Exploratory Wells					
District Name	CGWB	RGWD	Total			
Bharatpur	8	24	32			
Dausa	-	1	1			
Dhaulpur	2	4	6			
Karauli	19	13	32			
Sawai Madhopur	3	4	7			
Total	32	46	78			

DEPTH TO WATER LEVEL (PRE MONSOON – 2010)

The general depth to water level in the basin ranges from 10 to 40 meters below ground level, as seen on northeastern, central, western and southwestern parts of the basin.

There are however, two pockets; one in the central part around Hindaun and in the other in western part north of Nadoti, where water levels are quite deep (below 40m bgl).

Depth to water level	D	Total Area				
(m bgl) (Pre Monsoon – 2010)	Bharatpur	Dausa	Dhaulpur	Karauli	Sawai Madhopur	(sq km)
< 10	392.2	-	130.7	51.3	34.5	608.7
10 - 20	624.7	55.2	107.4	1,436.0	131.2	2,354.5
20 - 30	191.3	41.5	47.0	545.6	67.9	893.3
30 - 40	1.6	-	36.6	199.8	23.7	261.7
40 - 50	-	-	-	70.1	0.2	70.3
50 - 60	-	-	-	18.3	-	18.3
60 - 70	-	-	-	5.6	-	5.6
> 70	-	-	-	0.1	-	0.1
Total	1,209.8	96.7	321.7	2,326.8	257.5	4,212.5

* The area covered in the derived maps is less than the total basin area since the hills have been excluded from interpolation/contouring.

European Union State Partnership Programme

Water table elevation shows variation of about 160m ranging from about 160m amsl to 320m amsl. Since the water table generally follows the topography, such variations are normal. A perusal of Plate – X reveals that water table is very high to the northeast of Karauli where topography is also high and is the source of Gambhir river as well. The general gradient of water table is from southwest to northeast and water table elevation decreases from about 260m amsl to 160m amsl in northeast where the river joins Parbati river.

Water Table Elevation		District wise area coverage (sq km)						
(m amsl) Pre Monsoon - 2010	Bharatpur	Dausa	Dhaulpur	Karauli	Sawai Madhopur	(sq km)		
< 160	-	-	54.2	-	-	54.2		
160 - 180	194.8	-	92.7	-	-	287.5		
180 - 200	473.6	2.7	134.9	18.9	-	630.1		
200 - 220	507.8	87.3	26.4	611.8	48.3	1,281.6		
220 - 240	33.6	6.7	13.5	464.1	104.8	622.7		
240 - 260	-	-	-	488.5	85.7	574.2		
260 - 280	-	-	-	347.4	18.7	366.1		
280 - 300	-	-	-	226.8	-	226.8		
300 - 320	-	-	-	146.6	-	146.6		
< 320	-	-	-	22.7	-	22.7		
Total	1,209.8	96.7	321.7	2,326.8	257.5	4,212.5		

WATER LEVEL FLUCTUATION (PRE TO POST MONSOON 2010)

The water level fluctuation map is presented in Plate – XI. The Basin has aquifers formed in hardrock as well as those formed within thick cover of alluvium. On comparing this map with that of aquifer map of the area, it can be noticed that the fluctuation has been in the range of -2 to +6 m in most of the areas occupied by alluvial aquifers and the adjacent hardrock areas whereas in the interior parts of hardrock aquifers, northeast and southwest of Karauli the levels have shown larger variation to the extent of -6 and +16m.

District Nomo	District wise area coverage (sq km) within fluctuation range (m)										Total Area			
District Name	< -6	-6 to -4	-4 to -2	-2 to 0	0 to 2	2 to 4	4 to 6	6 to 8	8 to 10	10 to 12	12 to 14	14 to 16	> 16	(sq km)
Banswara	1	-	-	-	393.1	635.2	130.9	46.0	4.6	-	-	-	-	1,209.8
Chittaurgarh	-	-	-	-	7.0	84.7	5.0	-	-	-	-	-	-	96.7
Dungarpur	-	22.1	15.7	44.2	168.5	71.2	-	-	-	-	-	-	-	321.7
Pratapgarh	2.2	23.6	62.1	216.0	949.8	500.8	226.6	160.1	94.6	53.9	27.1	9.6	0.4	2,326.8
Udaipur	-	-	-	-	113.6	143.9	-	-	-	-	-	-	-	257.5
Total	2.2	45.7	77.8	260.2	1,632.0	1,435.8	362.5	206.1	99.2	53.9	27.1	9.6	0.4	4,212.5

ELECTRICAL CONDUCTIVITY DISTRIBUTION

GAMBHIR RIVER BASIN

The Electrical Conductivity (at 25°C) distribution map is presented in Plate – XII. The areas with low EC values in ground water (<2000 μ S/cm) are shown in yellow colour and occupy almost 70% of the basin area indicating that bye and large, the water in the basin is suitable for all purposes. The moderately high EC region (2000 – 4000 μ S/cm, green coloured region) occupies most of the remaining part of the basin whereas the high EC concentration areas (>4000 μ S/cm) are seen as small pockets in the east and west of Hindaun in Karauli district and near Bayana and Rupbas in Bharatpur district.

Electrical Conductivity Ranges				District	wise ar	ea cove	rage (sq k	(m)			Total Area
(μS/cm at 25°C)	Bharatpur		Dausa		Dhaulpur		Karauli		Sawai Madhopur		(og km)
(Ave. of years 2005-09)	Area	% age	Area	% age	Area	% age	Area	% age	Area	% age	(sq kiii)
< 2000	875.7	72.4	67.0	69.3	259.8	80.8	1,607.2	69.1	132.0	51.2	2,941.7
2000-4000	290.0	24.0	29.7	30.7	60.7	18.8	674.4	29.0	116.4	45.3	1,171.2
> 4000	44.1	3.6	-	-	1.2	0.4	45.2	1.9	9.1	3.5	99.6
Total	1,209.8	100.0	96.7	100.0	321.7	100.0	2,326.8	100.0	257.5	100.0	4,212.5

CHLORIDE DISTRIBUTION

High chloride concentration in ground water also renders it unsuitable for domestic and other purposes. The red coloured regions in Plate XIII are such areas where Chloride concentration is very high (> 1000 mg/l) which are largely found in alluvial aquifers to the east of Rupbas in Bharatpur district. Rest of the basin has either low (<250 mg/l) or moderately high (250 – 1000 mg/l) which together occupy more than 99% of the basin area.

Chloride Ranges	nloride Ranges District wise area coverage (sq km)										Total Area	
(mg/l)	Bharatpur		Dausa		Dhaulpur		Karauli		Sawai Madhopur		(ca km)	
(Ave. of years 2005-09)	Area	% age	Area	% age	Area	% age	Area	% age	Area	% age	(sq km)	
< 250	787.1	65.1	29.9	30.9	244.7	76.1	1,309.7	56.3	120.9	46.9	2,492.3	
250 - 1000	396.1	32.7	66.8	69.1	75.7	23.5	1,017.1	43.7	136.6	53.1	1,692.3	
> 1000	26.6	2.2	-	-	1.3	0.4	-	-	-	-	27.9	
Total	1,209.8	100.0	96.7	100.0	321.7	100.0	2,326.8	100.0	257.5	100.0	4,212.5	

The Fluoride concentration map (Plate – XIV) displays a number of scattered patches of high fluoride concentration (>3 mg/l) which is surrounded but an larger areas having 1.5 – 3.0 mg/l of fluoride in ground water as seen around Hindaun, southwest and northeast of Baseri, north of Bayana and southeast of Rupbas. Together these two areas combined (i.e., > 1.5 mg/l), occupy close to 22% of the basin rendering the ground water within these areas, of limited use from fluoride concentration point of view. The areas showing low concentration of fluoride in ground water are seen in rest of the 78% of the area which is widespread within the basin which is suitable for all purposes.

Fluoride Ranges		District wise area coverage (sq km)									Total Area
(mg/l)	Bhara	tpur	Da	iusa	Dha	ulpur	Kara	auli	Sawai M	adhopur	(ca km)
(Ave. of years 2005-09)	Area	% age	Area	% age	Area	% age	Area	% age	Area	% age	(sq km)
< 1.5	951.5	78.7	38.1	39.4	151.2	47.0	2,001.6	86.0	111.9	43.4	3,254.3
1.5-3.0	219.2	18.1	57.8	59.8	164.4	51.1	298.8	12.8	145.6	56.6	885.8
> 3.0	39.1	3.2	0.8	0.8	6.1	1.9	26.4	1.2	-	-	72.4
Total	1,209.8	100.0	96.7	100.0	321.7	100.0	2,326.8	100.0	257.5	100.0	4,212.5

NITRATE DISTRIBUTION

High nitrate concentration in ground water renders it unsuitable for agriculture purposes. Plate XV shows distribution of Nitrate in groundwater. The Nitrate concentration in the basin is, in general, high as seen by the red and green coloured regions occupying about 81% basin area. Low Nitrate areas limited in area and found in parts of Dhaulpur and Bharatpur districts in the north and the hilly areas if Karauli district.

Nitrate Ranges District wise area coverage (sq km)										Total Area	
(mg/l)	Bhara	tpur	Da	iusa	Dha	ulpur	Kara	nuli	Sawai Ma	dhopur	(ca km)
(Ave. of years 2005-09)	Area	% age	Area	% age	Area	% age	Area	% age	Area	% age	(sq kiii)
< 50	564.1	46.6	43.7	45.2	239.5	74.5	496.2	21.3	51.8	20.1	1,395.3
50-100	429.5	35.5	50.8	52.5	70.3	21.8	1,352.3	58.1	102.8	39.9	2,005.7
> 100	216.2	17.9	2.2	2.3	11.9	3.7	478.3	20.6	102.9	40.0	811.5
Total	1,209.8	100.0	96.7	100.0	321.7	100.0	2,326.8	100.0	257.5	100.0	4,212.5

Apart from surface exposures, the bedrock is encountered below soil cover and thick pile alluvial material at different depths. The beginning of massive bedrocks below the

alluvium and weathered/fractured hard rocks is taken as depth to bedrock and presented in Plate – XVI as depth in meters below the ground level.

Depth to Bedrock		District wise area coverage (sq km)							
(m bgl)	Bharatpur	Dausa	Dhaulpur	Karauli	Sawai Madhopur	(sq km)			
< 20	75.2	-	-	467.3	-	542.5			
40-60	65.2	-	293.9	1,167.3	210.7	1,737.1			
60-80	753.8	83.2	27.8	658.9	46.8	1,570.5			
> 80	315.6	13.5	-	33.3	-	362.4			
Total	1,209.8	96.7	321.7	2,326.8	257.5	4,212.5			

UNCONFINED AQUIFER

Hydrogeological properties are different for alluvial and hard rock aquifers and therefore, this aquifer has been mapped as two separate regions viz., unconfined aquifers in alluvial and in hard rock areas.

In Gambhir basin the alluvial material is predominantly fluvial in origin and composed of sand, clay and gravel. The thickness of the alluvial aquifer is in general not very think and varies in thickness to less than 10m, however in the Bayana – Rupbas region if reaches a higher thickness to 50m.

The hardrock aquifers are formed in weathered and fractured part of the hard rocks that can sustain water under unconfined conditions. Such aquifers are formed predominantly in Sandstones and Quartzites and constitute good aquifers in Karauli district and partly in Bharatpur and Dhaulpur districts. General thickness of this aquifer ranges between <10 to 40m and reaches maximum of 70m.

Alluvial areas:

Unconfined aquifer		District wise area coverage (sq km)							
Thickness (m)	Bharatpur	Dausa	Dhaulpur	Karauli	Sawai Madhopur	(sq km)			
< 10	321.6	96.7	61.2	1,101.4	83.2	1,664.1			
10-20	344.6	-	90.9	303.0	100.0	838.5			
20-30	196.3	-	64.3	127.9	74.3	462.8			
30-40	88.8	-	-	11.8	-	100.6			
40-50	21.7	-	-	-	-	21.7			
> 50	2.0	-	-	-	-	2.0			
Total	975.0	96.7	216.4	1,544.1	257.5	3,089.7			

Hardrock areas:

Unconfined aquifer		District wise area coverage (sq km)								
Thickness (m)	Bharatpur	Dausa	Dhaulpur	Karauli	Sawai Madhopur	(sq km)				
<10	69.5	-	55.5	282.3	-	407.3				
10-20	165.1	-	49.8	162.2	-	377.1				
20-30	0.2	-	-	87.2	-	87.4				
30-40	-	-	-	170.5	-	170.5				
40-50	-	-	-	37.7	-	37.7				
50-60	-	-	-	31.9	-	31.9				
60-70	-	-	-	10.5	-	10.5				
> 70	-	-	-	0.4	-	0.4				
Total	234.8	-	105.3	782.7	-	1,122.8				

CROSS SECTIONS

GAMBHIR RIVER BASIN

Several hydrogeologic cross sections have been drawn to better depict the sub-surface distribution of lithology. These sections have been overlaid with geological maps and structural faults if there are any have been transferred for verification of their impact on sub-surface material disposition. The alignment of the cross sections is shown in Plate XVIII and corresponding sections are presented in Plates – XIX to XXII. The broad alignment of the sections is as given below:

Name of Section Line	Orientation
Section AA'	SW – NE
Section BB'	NW – SE
Section CC'	NW – SE
Section DD'	N — S

CROSS SECTIONS

GAMBHIR RIVER BASIN

Section A-A':

Section A-A' (*Plate – XIX*) is drawn from SW to NE direction covering a distance of about 75km. The lithologs of 5 bore wells were used for preparing the cross section. The river Gambhir cuts across through the section twice in the eastern part where the thickness of alluvial material is maximum, however the sub-surface is dominated by clay and sand of limited thickness is present from west to east. In the Sandstone, Schist, Phyllite and Quartzite are present as deepest layers till the drilled depth of which Schist and Phyllite are most prominent.

Water table elevation in this section varies from 210m to 185m amsl.

Section B-B':

Section B-B' (*Plate – XX*) is from NW to SE in the southwestern part of the basin covering a length of about 50km. The lithologs of 4 boreholes utilized for preparing this section are marked on the section line. The section reveals the presence of thick sand layer of about 50m thick which is underlain by quartzite and shales at different places. The GBF marks the limit of alluvial cover and on the other side of the fault the shales and sandstones are present as consistently thick layers and are also exposed.

Water table elevation varies from 240m to 250m amsl.

ROLTA Rolta India Limit

Section C-C':

Section C-C' (*Plate – XXI*) is from NW to SE direction in the central portion of the basin covering a length of about 65km. The lithologs of 4 bore wells are marked on the section. Major formations in the section are Older Alluvium followed by Shale, Sandstone and Schist. Schist is seen in the bottommost layer (till drilled depth) in the western part which seem to hit against the Vindhyan shales to its east, separated by GBF. Shale and Sandstone are predominant lithologies in the eastern part of the section and a thick sand layer also marks the eastern end of the section.

Section D-D':

Section D-D' (*Plate – XXII*) is approximately oriented in N-S direction covering a length of about 40km. The lithologs of 5 boreholes have been utilized for preparation of this section and the same are marked on the section below. In this section, major portion is covered by sandstone and sandy alluvium. Compact sandstone is encountered at the bottom of the wells in the southern portion. The sand layer attains approximately 100m thickness in the southern most part and in one well a thick (>20m) but localized clay layer is encountered.

Water table elevation in this section ranges from 175m amsl to 225m amsl.

3D MODEL OF AQUIFERS

GAMBHIR RIVER BASIN

The continuous litho-stratigraphic model has been developed using Rockworks software for the Gambhir river basin using interpolation techniques on the data of scattered wells given as an input.

The (Plate – XXIII) presents the 3D model depicting the various litho-stratigraphic units in the entire river basin. From this model it appears that alluvium formation consisting of sand and clay is present throughout the area overlain by top soil. Quartzite having a significant thickness is present throughout the area and it is overlain by alluvium, shale and sandstone. Weathered and fractured zone of quartzite is present in the southeast part of the area. The second sandy aquifer is found in the northern part and extends to west to east part of the basin within alluvium. The depth of weathered and fractured hard rock is shallow in the southern part as compared to the eastern part of the basin.

Glossary of terms

S. No.	Technical Terms	Definition
1		A saturated geological formation which has good permeability to
1	AQUIFER	supply sufficient quantity of water to a Tube well, well or spring.
2	ARID CLIMATE	Climate characterized by high evaporation and low precipitation.
3	ARTIFICIAL RECHARGE	Addition of water to a groundwater reservoir by man-made activity
		The sum total of all atmospheric or meteorological influences
4	CLIMATE	principally temperature, moisture, wind, pressure and evaporation
		of a region.
5		A water bearing strata having confined impermeable overburden. In
5	CONTINED AQUITER	this aquifer, water level represents the piezometric head.
6	CONTANANATION	Introduction of undesirable substance, normally not found in water,
0	CONTRIMINATION	which renders the water unfit for its intended use.
7	DRAWDOWN	The drawdown is the depth by which water level is lowered.
8	FRESH WATER	Water suitable for drinking purpose.
9	GROUND WATER	Water found below the land surface.
10		A hydro-geologic unit containing one large aquifer or several
10	GROUND WATER BASIN	connected and interrelated aquifers.
11	GROUNDWATER	The natural infiltration of surface water into the ground.
11	RECHARGE	
12	HARD WATER	The water which does not produce sufficient foam with soap.
12	HYDRAULIC	A constant that serves as a measure of permeability of porous
15	CONDUCTIVITY	medium.
14	HYDROGEOLOGY	The science related with the ground water.
15	HUMID CLIMATE	The area having high moisture content.
16	ISOHYET	A line of equal amount of rainfall.
17	METEOROLOGY	Science of the atmosphere.
18	PERCOLATION	It is flow through a porous substance.
19	PERMEABILITY	The property or capacity of a soil or rock for transmitting water.
20	24	Value of hydrogen-ion concentration in water. Used as an indicator
20	pri	of acidity (pH < 7) or alkalinity (pH > 7).
21	PIEZOMETRIC HEAD	Elevation to which water will rise in a piezometers.
22	RECHARGE	It is a natural or artificial process by which water is added from
22	RECHARGE	outside to the aquifer.
23		Amount of water which can be extracted from groundwater without
23	SALL HELD	producing undesirable effect.
24	SALINITY	Concentration of dissolved salts.
25	SEMILARID	An area is considered semiarid having annual rainfall between 10-20
25	SEMIFARID	inches.
26	SEMI-CONFINED	Aquifer overlain and/or underlain by a relatively thin semi-pervious
20	AQUIFER	layer.
27		Quantity of water which is released by a formation after its
21		complete saturation.
28	TOTAL DISSOLVED	Total weight of dissolved mineral constituents in water per unit
20	SOLIDS	volume (or weight) of water in the sample.

S. No.	Technical Terms	Definition
		It is defined as the rate of flow through an aquifer of unit width and
20		total saturation depth under unit hydraulic gradient. It is equal to
29	IKANSIVIISSIBILITY	product of full saturation depth of aquifer and its coefficient of
		permeability.
30	Ι ΙΝΟΟΝΕΙΝΕΌ ΔΟΙ ΙΙΕΕΒ	A water bearing formation having permeable overburden. The
50		water table forms the upper boundary of the aquifer.
31	UNSATURATED ZONE	The zone below the land surface in which pore space contains both
		water and air.
32	WATER CONSERVATION	Optimal use and proper storage of water.
33	WATER RESOURCES	Availability of surface and ground water.
34	WATER RESOURCES	Planned development, distribution and use of water resources.
	MANAGEMENT	Water table is the upper surface of the zone of saturation at
35	WATER TABLE	atmospheric prossure
36	ΖΟΝΕ ΟΕ ΣΑΤΠΡΑΤΙΟΝ	The ground in which all nores are completely filled with water
50		Flow of free ions in the water at 25C mu/cm
37	CONDUCTIVITY	now of free long in the water at 25c mayern.
		A Vertical Projection showing sub-surface formations encountered in
38	CROSS SECTION	a specific plane.
20		A structure showing all three dimensions i.e. length, width and
39	3-D PICTURE	depth.
40	GWD	Ground Water Department
41	CGWB	Central Ground Water Board
42	CGWA	Central Ground Water Authority
43	SWRPD	State Water Resources Planning Department
44	EU-SPP	European Union State Partnership Programme
45	TOPOGRAPHY	Details of drainage lines and physical features of land surface on a
		map.
46	GEOLOGY	The science related with the Earth.
47	GEOMORPHOLOGY	The description and interpretation of land forms.
40		Monitoring of Ground Water level from the selected
48	PRE MUNSOUN SURVEY	DKW/Plezometer before Monsoon (carried out between 15th May
		Monitoring of Ground Water level from the selected
10	POST-MONSOON	DKW/Piezometer after Monsoon (carried out between 15th
45	SURVEY	October to 15th November)
		A non-numping small diameter hore hole used for monitoring of
50	PIEZOMETER	static water level.
	GROUND WATER	Change in static water level below ground level.
51	FLUCTUATION	
52	WATER TABLE	The static water level found in unconfined aquifer.
53	DEPTH OF BED ROCK	Hard & compact rock encountered below land Surface.
E A	G.W. MONITORING	Dug wells selected on grid basis for monitoring of state water level.
54	STATION	
55	EOLIAN DEPOSITS	Wind-blown sand deposits

(Contd...)

A A A KAR KAR AN AN

S No	Myths	Facts
1	What is Ground Water	Water which occurs below the land in geological
	an underground lake	formations/rocks is Ground water
	 a net work of underground rivers 	
	 a bowl filled with water 	
2	Ground Water occurs everywhere beneath the Land Surface	Not really, it depends on the nature of rock formation
3	There is a relationship between ground water and surface water	Not all the places. Near streams/rivers there is relation
4	Groundwater is not renewable resource	It is renewable source and every year it is being recharged through rain/applied irrigation etc
5	Ground water is unlimited and deeper you drill more discharge	It is limited to annual recharge from rain/applied irrigation. The discharge may not increase if you go deeper
6	Ground Water moves rapidly	The movement of ground water is very slow
7	Ground water pumped from wells is thousands of years old	Generally the ground water being tapped through wells is a few years old
8	If water taste good—it is safe to drink	It may have other chemicals e.g. fluoride, nitrates etc which are harmful
9	Water from free flowing tube wells is very pure	This water can also be contaminated so test before use
10	If I recharge my TW/DW/HP it will not benefit me	It will also benefit you and also adjoing wells
11	There is no static ground water resources in Rajasthan	Rajasthan is also having Static GW resources, and being tapped in most of areas as GW annual withdrawal is more than annual recharge
12	I cannot meet annual cooking and drinking water requirement by rain water harvesting	The water requirement for drinking and cooking is only 8 lit/day. You can harvest this water for family of 5 persons from roof top or paved area of 75 Sq m to meet annual requirement
13	You can increase ground water recharge	This can be done by harvesting the rain water and storing in sub surface reservoir (GW) by constructing the recharge structures
14	You cannot use abandoned TW/HP/DW for ground water recharge	These should be used as recharge structures as harvested rain water is directly put into GW reservoir
15	Putting waste near HP/TW will not cause any problem	Such actions will pollute wells and water

11

-

Rolta India Limited

Central & Registered Office Rolta Tower A, Rolta Technology Park, MIDC, Andheri (East), Mumbai - 400 093 Tel : +91 (22) 2926 6666, 3087 6543 Fax : +91 (22) 2836 5992 Email : indsales@rolta.com

www.rolta.com

.