

Hydrogeological Atlas of Rajasthan Sukli River Basin

Hydrogeological Atlas of Rajasthan

Sukli River Basin

List of Plates	Title	Page No.
Plate I	Administrative Map	2
Plate II	Topography	4
Plate III	Rainfall Distribution	4
Plate IV	Geological Map	6
Plate V	Geomorphological Map	6
Plate VI	Aquifer Map	8
Plate VII	Location of Ground Water Monitoring Stations	8
Plate VIII	Location of Exploratory Wells	10
Plate IX	Depth to Water Level (Pre-Monsoon 2010)	10
Plate X	Water Table Elevation (Pre-Monsoon 2010)	12
Plate XI	Water Level Fluctuation (Pre-Post Monsoon 2010)	12
Plate XII	Electrical Conductivity Distribution (Average Pre- Monsoon 2005-09)	14
Plate XIII	Chloride Distribution (Average Pre-Monsoon 2005-09)	14
Plate XIV	Fluoride Distribution (Average Pre-Monsoon 2005-09)	16
Plate XV	Nitrate Distribution (Average Pre-Monsoon 2005-09)	16
Plate XVI	Depth to Bedrock	18
Plate XVII	Map of Unconfined Aquifer	18
Plate XVIII	Index Map Showing Alignment of Cross Sections	20
Plate XIX	Cross Section Along A-A'	22
Plate XX	Cross Section Along B-B'	22
Plate XXI	3D Model	24
	Glossary of terms	25

ADMINISTRATIVE SETUP

SUKLI RIVER BASIN

Location:

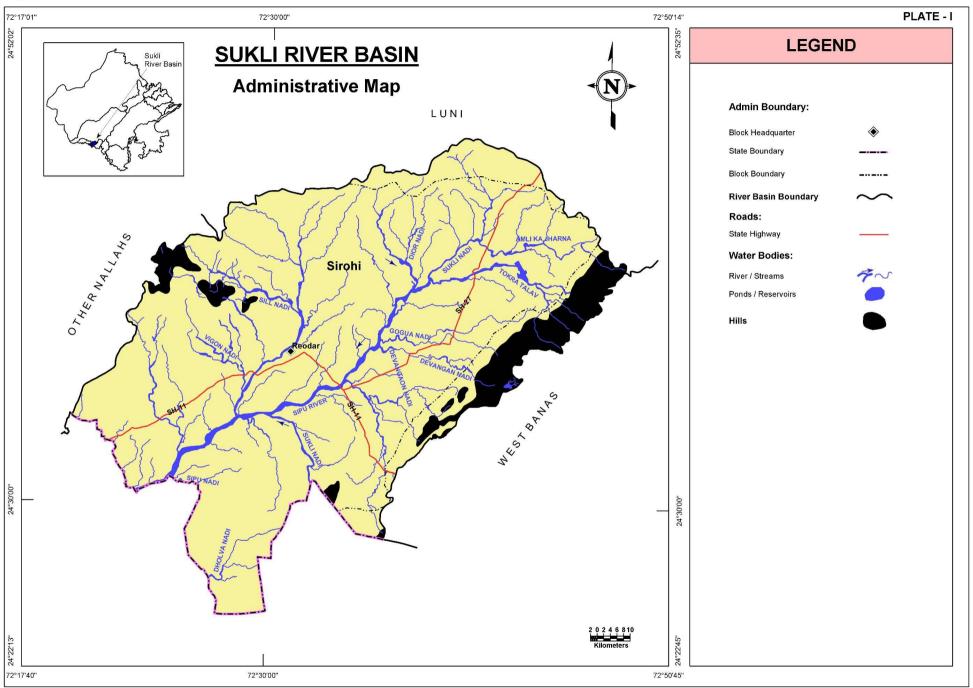
River Sukli (also called Sipu River) flows in the south-western part of Rajasthan, and its basin is very small in geographic extend measuring less than 1,000 sq kms. It stretches between 24° 24' 42.01" to 24° 47' 22.30" North latitudes and 72° 19' 43.99" to 72° 48' 32.40" East longitudes (Plate – I). It is bounded on the north by the Luni River Basin, on the east by the West Banas River Basin and on the west by the area drained by Other Nallahs of Jalore. The southern border is shared with Gujarat State. The basin extends over parts of Sirohi district only. The total catchment area of the Basin is 999.4 sq km.

The western part of the basin is marked by hilly terrain belonging to the Aravali chain. East of the hills lies a narrow alluvial plain with a gentle eastward slope. The River Sukli originates in the western slopes of Mt. Abu, the Silari hills and the area between these two hill features. It flows parallel to Mt. Abu and the West Banas River for about 29 km in Rajasthan and joins the West Banas River in Gujarat State.

Administrative Set-up:

Administratively, Sukli River Basin extends over parts of Sirohi, encompassing 3 Blocks and 114 villages.

S. No.	District Name	Area (sq km)	% of Basin Area	Total Number of Blocks	Total Number of Towns and Villages
1	Sirohi	999.4	100.0	3	114


Climate:

The Sukli River basin is very small and falls at the edge of arid climatic region border. By and large it is a dry area but not much arid since it is surrounded by hills. It is extremely cold from October to February while turning hot from March to September. Summer records very high temperatures in the range of $47^{\circ}\text{C} - 48^{\circ}\text{C}$ but winters are chilly when temperature falls to about 2°C . The basin receives fairly low rainfall because the mean annual rainfall over Sukly River Basin was 350 mm, of which most of the rainfall is received during the four Monsoon months (June-September).

TOPOGRAPHY SUKLI RIVER BASIN

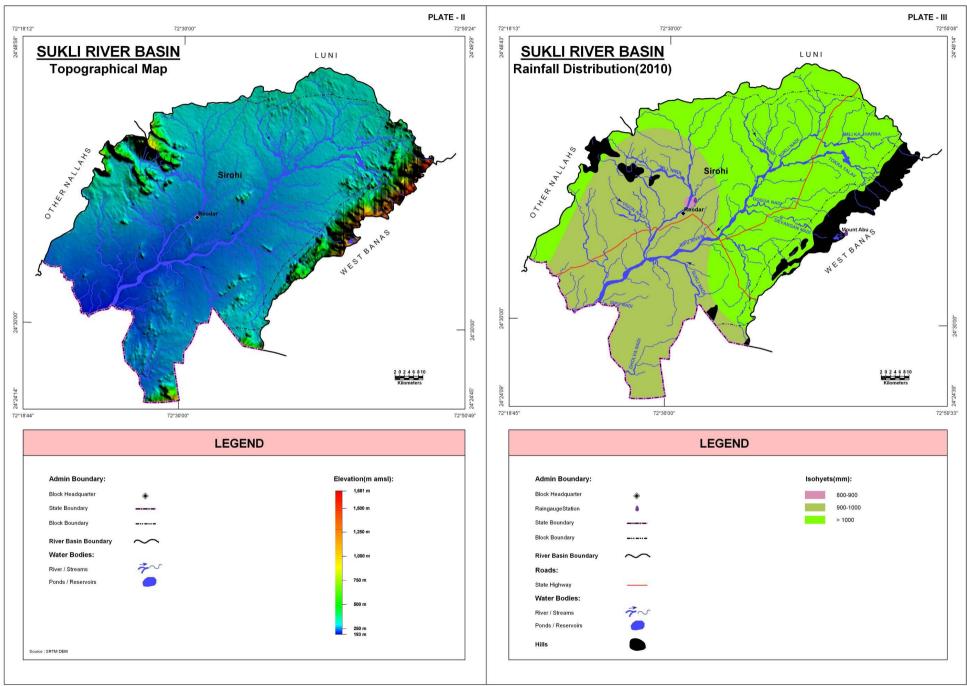
The basin is bordered in the east by Aravalli Range trending northeast – southwest and Mount Abu, the highest point of Rajasthan falls within this basin. There are some east west trending hills in the western part of the basin and some isolated local hills within the basin. While the highest point of the basin is about 1690m above mean sea level, the lowest point is about 192m amsl located at the exit point of the Sukli river from Rajasthan, into Gujarat. The rest of the basin area is undulating with elevations ranging between 200m amsl to 300m amsl. The Sukli river flows in a northeast – southwest direction, while receiving tributaries from east, north and west directions.

Table: District wise minimum and maximum elevation

S. N	o. District Name	Min Elevation (m amsl)	Max. Elevation (m amsl)
1	Sirohi	191.7	1,690.2

RAINFALL

The general distribution of rainfall across the Sukli River Basin (as per rainfall statistics for the year 2010) can be visualized from isohyets presented in the Plate III where most of the northern, eastern and western parts receive higher rainfalls (in the range of >1000mm of total annual rainfall) whereas; the southern parts received relatively low rainfall (between 800 to 1000mm). The average annual rainfall for the basin computed based on available station data is about 1281 mm. The rainfall data for available rain gauge stations is presented below.

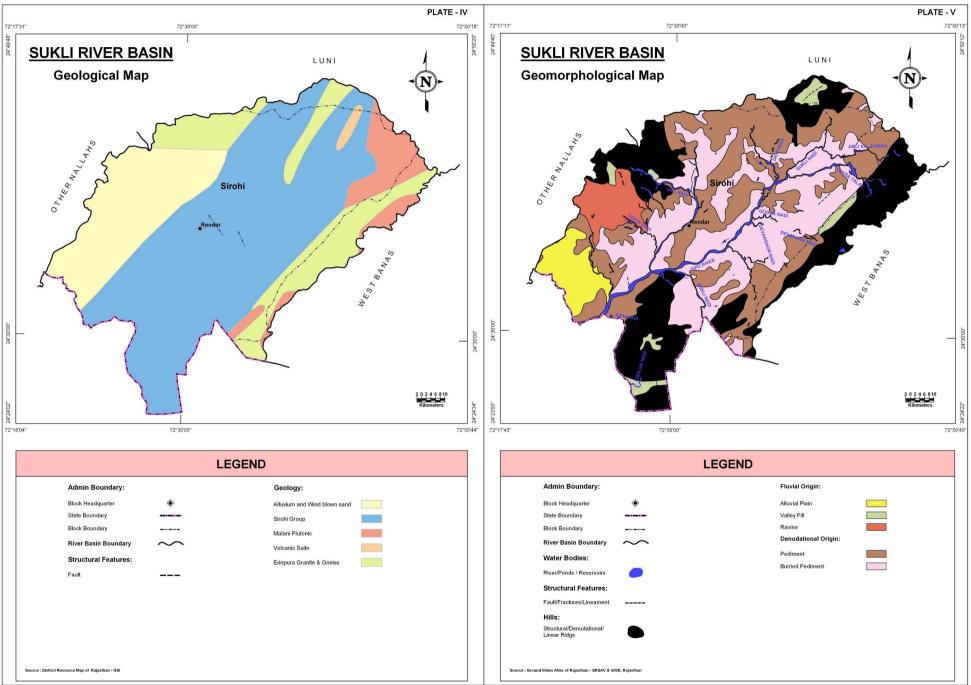

Table: District wise total annual rainfall (based on year 2010 meteorological station recordings (http://waterresources.rajasthan.gov.in)

S. No.	Rain gauge Stations	Total Monsoon Rainfall (mm)	Total Non-Monsoon Rainfall (mm)	Total Annual Rainfall (mm)
1	Mount Abu	1,484.0	187.8	1,671.8
2	Reodhar	710.0	180.0	890.0

GEOLOGY SUKLI RIVER BASIN

The Sukli River Basin is covered mainly by rocks belonging to the Pre-Cambrian rocks (Delhi and Aravali Super-Group) to Aeolian and Fluvial deposits of Recent to Sub-Recent age. Very limited area, i.e., valleys intervening hills has deposits of eolian and fluvial origin of Recent to Sub-Recent age.

Age	Super-Group Group/ Formation		Rock Types			
Recent to Sub recent	Alluvium		Stream laid deposits, sand and gravel, mixed with clay Silt and kankar			
	XX-	xUr	nconformityxxx			
	Post Delhi	Post Delhi Malani Rhyolite Dolerites, Basalt Jalore & Erinpura Granite				
Lower to Upper		XXX	xunconformityxxx			
Precambrian	Delhi Super-Group Ajabgarh Series		Phyllite, Schist, Gneiss, Marble, Amphibolites, Calc Siticates, quartzite mica schist etc.			
	XX-	xUr	nconformityxxx			
Lower Precambrian	Aravali		Phyllite, crystalline, Limestone, quartzite and Conglomerates with tuffs			
			and lavas.			


GEOMORPHOLOGY

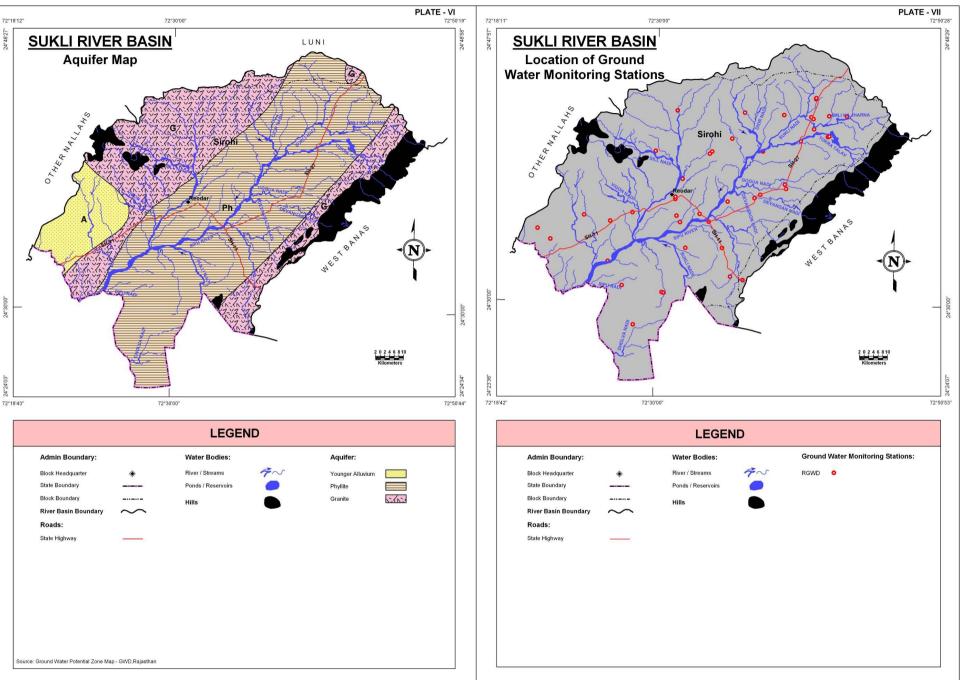
Origin	Landform Unit	Description
	Buried Pediment	Pediment covers essentially with relatively thicker alluvial, colluvial or weathered materials.
Denudational	Pediment	Broad gently sloping rock flooring, erosional surface of low relief between hill and plain, comprised of varied lithology,
	realment	criss-crossed by fractures and faults.
	Alluvial Plain	Mainly undulating landscape formed due to fluvial activity, comprising of gravels, sand, silt and clay. Terrain mainly
	Alluvidi Pidili	undulating, produced by extensive deposition of alluvium.
Fluvial	Valley Fill	Formed by fluvial activity, usually at lower topographic locations, comprising of boulders, cobbles, pebbles, gravels,
		sand, silt and clay. The unit has consolidated sediment deposits.
	Ravine	Small, narrow, deep, depression, smaller than gorges, larger than gulley, usually carved by running water.
	Denudational,	Steep sided, relict hills undergone denudation, comprising of varying lithology with joints, fractures and lineaments.
Hills	Structural Hill,	Linear to arcuate hills showing definite trend-lines with varying lithology associated with folding, faulting etc.
	Linear Ridge	Long narrow low-lying ridge usually barren, having high run off may form over varying lithology with controlled strike.

AQUIFERS SUKLI RIVER BASIN

Weathered and fractured hardrocks seem to constitute most of the aquifer material in this basin. The phyllites occupy the central part of the basin over which the Sukli river seems to flow for its most part, accounting for more than 55% of the basin area. Granite aquifers flank the phyllite aquifers on either side towards southeast and northwest contributing to 31% of the basin's aquifer area. The younger alluvium aquifer forms a small part (less than 8%) in the southwestern part of the basin.

Aquifer in Potential Zone	Area (sq km)	% of Basin Area	Description of the unit/Occurrence
Younger Alluvium	75.6	7.6	It is largely constituted of Aeolian and Fluvial sand, silt, clay, gravel and pebbles in varying proportions.
Touriger Alluvium	/5.6	7.0	gravel and pebbles in varying proportions.
Dhallita	550.1	FF 1	These include meta sediments and represented by
Phyllite		55.1	carbonaceous phyllite.
Cranita	200.4	20.0	Light grey to pink colour, medium to coarse grained, and
Granite	308.4	30.8	Light grey to pink colour, medium to coarse grained, and characteristically have porphyritic texture.
Non Potential Zone	65.3	6.5	Hills
Total	999.4	100.0	

LOCATION OF GROUND WATER MONITORING WELLS


The basin has a fairly well distributed network of ground water monitoring stations (49) in the basin all owned by RGWD as this basin does not have any monitoring well belonging to CGWB network. After benchmarking of monitoring network, one additional well has been recommended to be added to network to effectively monitor ground water quality in the basin. The well network seems to have sufficient number of wells for water level monitoring.

District Name	CGWB	RGWD	Total	Recommended additional wells optimization of monitoring networks		
				Water Level	Water Quality	
Sirohi	1	49	49	-	1	

LOCATION OF EXPLORATORY WELLS

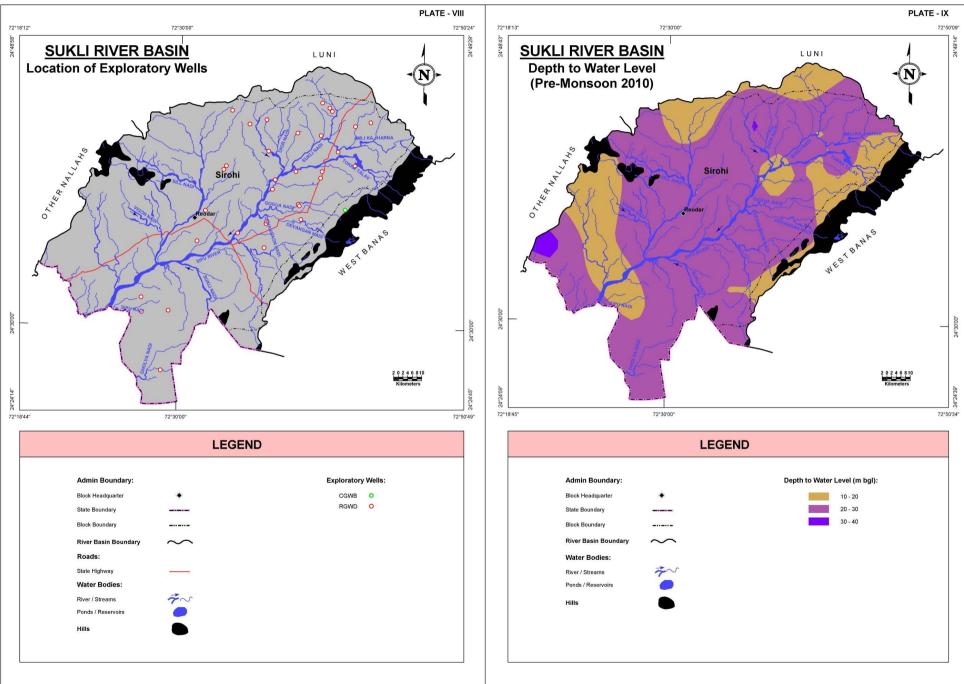
SUKLI RIVER BASIN

In all there are 34 exploratory boreholes present in the basin drilled in the past by RGWD (33) and only one by CGWB that form basis for delineation of subsurface aquifer distribution. Map (Plate – VIII) reveals that while there are good number of exploratory wells in the eastern part, there are very few or no wells in the western part of the basin.

District Name	CGWB	RGWD	Total
Sirohi	1	33	34

DEPTH TO WATER LEVEL (PRE MONSOON – 2010)

The depth to water level map is presented in Plate – IX. The general depth to water level in the basin ranges from 10 to 30 meters below ground level, as seen in most of the central parts and along the fringes which together account for more than 99% of the basin area. The small patch in the western most point of the basin adjacent to Other Nallahs Basin has recorded a much deeper water level (in the 30m bgl to 40m bgl).


Depth to water level (m bgl)	District wise area Coverage (sq km)*		
Pre Monsoon – 2010	Sirohi		
10 – 20	237.1		
20 – 30	689.5		
30 – 40	7.5		
Total	934.1		

^{*} The area covered in the derived maps is less than the total basin area since the hills have been excluded from interpolation/contouring.

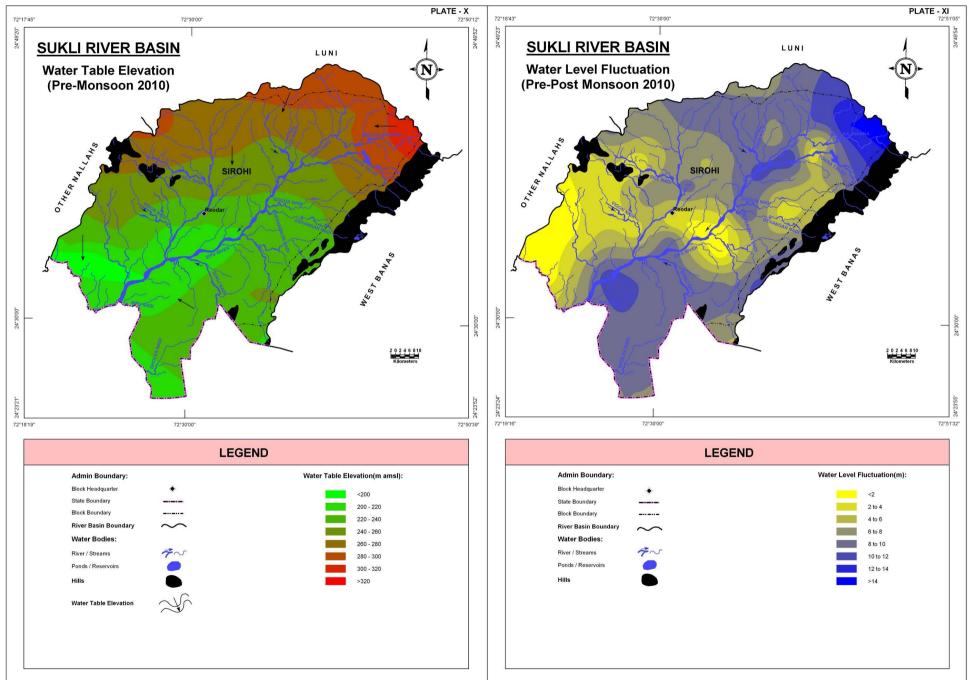
WATER TABLE ELEVATION (PRE MONSOON 2010)

SUKLI RIVER BASIN

Water table elevation shows variation between about 320m amsl and 200m amsl. The water table contour map is presented in Plate – X. The highest water table is indicated in the northeastern most part of the basin and the lowest water table elevation is seen in the southwestern most part which suggests a general northeast to southwestwards flow of ground water in the basin. The arrows indicated in the map show the local flow directions which point towards southwest, south and southeast in the northern part all flowing towards the river channel whereas in the southern part the general ground water flow direction is east to west in the southeastern part and a north-south flow direction in the western part. Flow gradient is relatively steeper in the northern part as compared to southern part which has sluggish flow of ground water.

Water Table Elevation	District wise area coverage (sq km)
(m amsl)	Sirohi
Pre Monsoon - 2010	5
< 200	24.5
200 - 220	149.3
220 - 240	283.4
240 - 260	178.9
260 - 280	177.6
280 - 300	103.7
300 - 320	16.2
> 320	0.5
Total	934.1

WATER LEVEL FLUCTUATION (PRE TO POST MONSOON 2010)


The Basin is primarily a hardrock aquifer terrain and the aquifers formed in alluvial area are very limited in distribution. The water level fluctuation map is presented in Plate – XI which indicates a large fluctuation range from less than 2m to more than 14m. The area with highest rise in ground water level is located in the northeastern part of the basin where the river originates and is also the area where maximum rainfall in the basin was recorded. There are two pockets, one in the western part where alluvial aquifer is present and the other in the centre of the basin where fluctuation has been in the range of less than 2m to 6m rise whereas the rest of the basin has shown a general rise in ground water level between 6m to 10m.

District Name	Distri	District wise area coverage (sq km) within fluctuation range (m) < 2 2 to 4 4 to 6 6 to 8 8 to 10 10 to 12 12 to 14 > 14								
District Name	< 2	2 to 4	4 to 6	6 to 8	8 to 10	10 to 12	12 to 14	> 14	(sq km)	
					324.0					

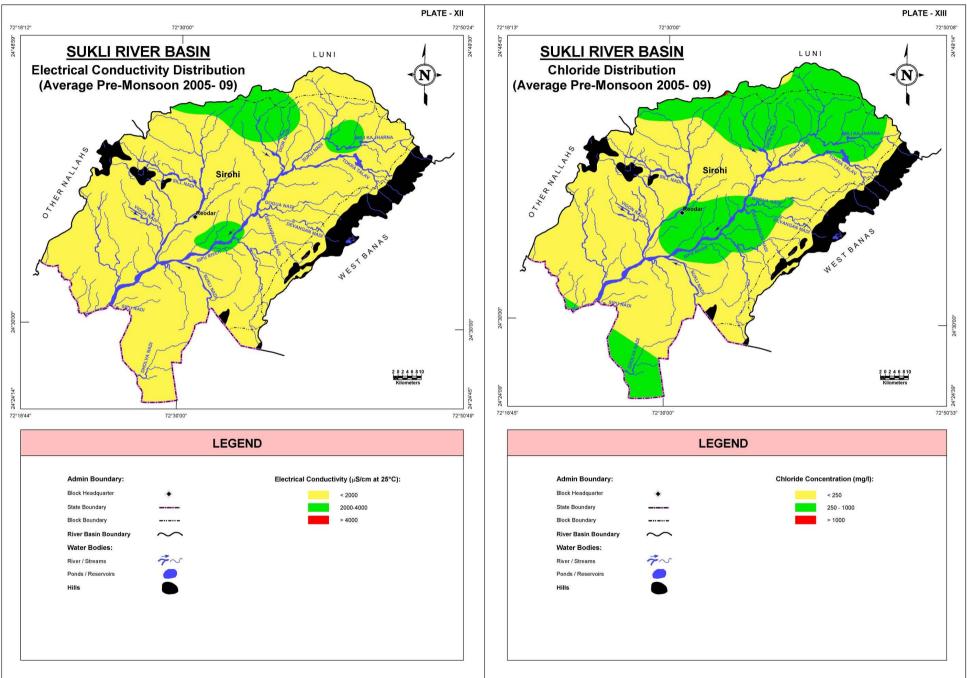
ELECTRICAL CONDUCTIVITY DISTRIBUTION

SUKLI RIVER BASIN

The Electrical Conductivity (at 25° C) distribution map is presented in Plate XII. Perusal of the map reveals only yellow (EC < $2000 \,\mu$ S/cm) and green (EC 2000 – $4000 \,\mu$ S/cm) coloured regions suggesting that about 90% of the area has good quality of ground water suitable for domestic purposes and the rest i.e., about 10% area has moderately high EC that is still within tolerable limits for potability. There are no areas that have shown very high EC in ground water (EC > $4000 \,\mu$ S/cm).

Electrical Conductivity Ranges (μS/cm at 25°C)	District wise	area coverage (sq km) Sirohi
(Ave. of years 2005-09)	Area	% age
< 2000	845.7	90.5
2000-4000	88.3	9.5
> 4000	0.1	-
Total	934.1	100.0

CHLORIDE DISTRIBUTION


Plate – XIII illustrates Chloride distribution map. Moderately high concentration (250 – 1000 mg/l) areas are seen in north, central and a small patch in the southern part mostly within the phyllite aquifers. Such areas occupy about 35% of the basin area. The remaining part of the basin has shown the presence of low concentration of chloride in ground water (<250 mg/l) rendering it suitable for all purposes. There is also seen a very small (<1 sq km) patch of red colour marking the presence of high chloride concentration in ground water in the northern part of the basin.

Chloride Ranges	District wise area coverage (sq km)		
(mg/l)	Sirohi		
(Ave. of years 2005-09)	Area	% age	
< 250	611.4	65.5	
250 - 1000	322.1	34.5	
> 1000	0.6	0.0	
Total	934.1	100.0	

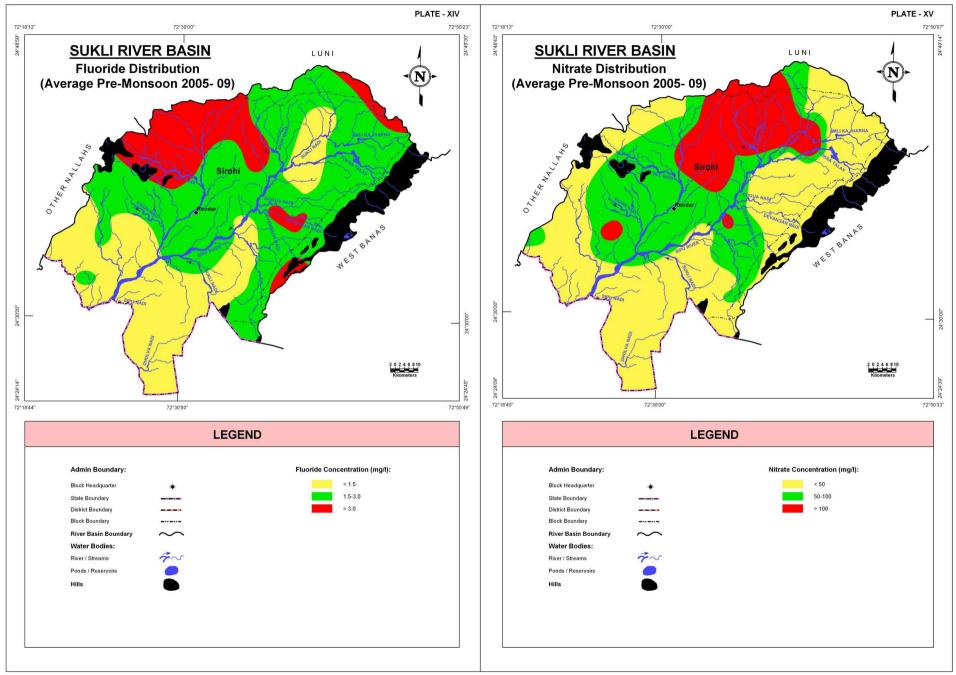
FLUORIDE DISTRIBUTION

SUKLI RIVER BASIN

The Fluoride concentration map (Plate – XIV) displays a number of scattered patches of high fluoride concentration (>3 mg/l) which is surrounded but an even larger area having 1.5 – 3.0 mg/l of fluoride in ground water. Together these two areas combined (i.e., > 1.5 mg/l), occupy close to 84% of the basin rendering the ground water of limited use for domestic purposes from fluoride concentration point of view. Interestingly these high Fluoride (>3.0 mg/l) areas correspond to the granitic aquifers as can be seen from Plate – VI. Relatively good quality of ground water (i.e., having <1.5 mg/l of Fluoride concentration) is only present in areas that have aquifers formed in either Phyllite or in alluvium. The southward bulge of propagation of fluoride is possibly due to the southwards flow of ground water in that region towards Sukli River.

Fluoride Ranges	District wise area	coverage (sq km)	
(mg/l)	Sirohi		
(Ave. of years 2005-09)	Area	% age	
< 1.5	305.1	32.6	
1.5-3.0	476.8	51.1	
> 3.0	152.2	16.3	
Total	934.1	100.0	

NITRATE DISTRIBUTION


High nitrate concentration in ground water renders it unsuitable for agriculture purposes. Plate – XV shows distribution of Nitrate in ground water. The Nitrate concentration is also high in this basin as seen by the red (>100mg/l) and green (50 – 100 mg/l) coloured regions occupying about 83% basin area. The patch seems to occupy large area in the north and propagate along the ground water flow direction towards south affecting major part of the area to fall into moderately high (50 – 100 mg/l). That leaves the ground water of only about 17% of the basin area suitable for agriculture purposes.

Nitrate Ranges	District wise area coverage (sq km)		
(mg/l)	Sirohi		
(Ave. of years 2005-09)	Area	% age	
< 50	483.2	51.8	
50-100	295.5	31.6	
> 100	155.4	16.6	
Total	934.1	100.0	

DEPTH TO BEDROCK

SUKLI RIVER BASIN

The hilly areas expose the bedrock and gradually into the plains, the thick alluvial pile conceals the bedrock under sand, clay and mix. From an aquifer perspective, the beginning of massive bedrock is taken to mark the start of bedrock and thus the weathered and fractured part of bedrock and alluvial cover constitutes the material above the bedrock. Plate – XVI represents depth to bedrock in meters below ground level (bgl). There are two isolated patches of depth to bedrock more than 40m bgl in the western border of the basin and one patch of less than 20m bgl in the eastern part adjacent to hills. These areas together add up to 4% of the basin area whereas the remaining 96% of the basin area has depth to bedrock ranging between 20 – 40m bgl.

Depth to Bedrock	District wise area coverage (sq km)	
(m bgl)	Sirohi	
< 20	16.4	
20-40	896.5	
> 40	21.2	
Total	934.1	

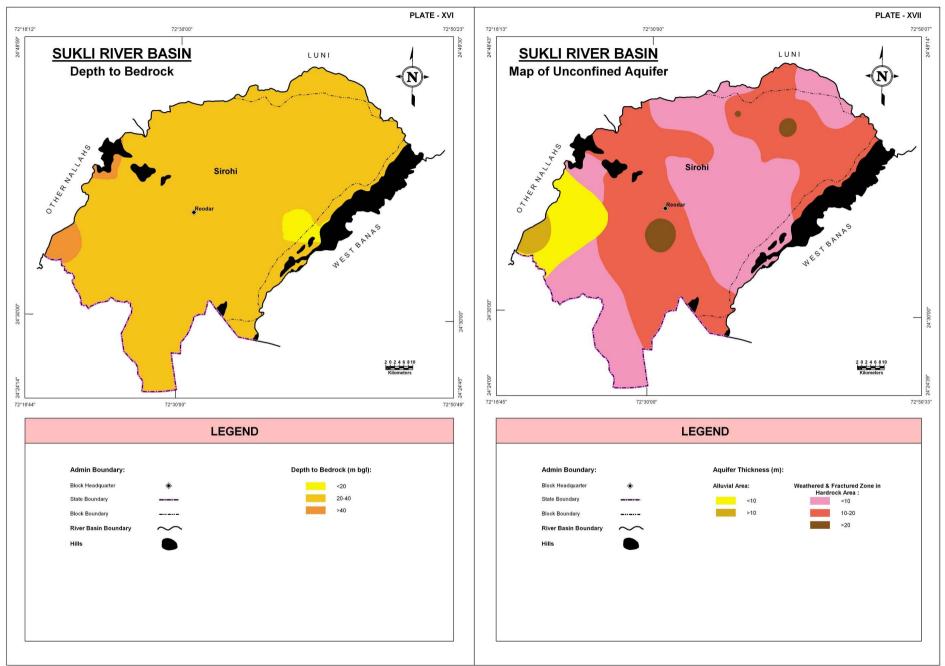
UNCONFINED AQUIFER

Hydrogeological properties are different for alluvial and hard rock aquifers and therefore, this aquifer has been mapped as two separate regions viz, unconfined aquifers in alluvial and in hard rock areas. The same is presented in Plate – XVII.

The alluvial aquifer is present in the southwestern part of the basin and is predominantly of eolian or fluvial origin represented by sand, clay and gravel. The thickness of unconfined aquifer in alluvial areas is often less than 10m (82% of alluvial part of the basin) and only about 17% of the alluvial area has slightly more thickness than 10m. In hardrock areas also the thickness of unconfined aquifer (weathered and fractured hard rock) is mostly less than 20m (almost 98% of the hardrock aquifer area) and very small patches in the centre and north have slightly more thickness than 20m.

Alluvial areas

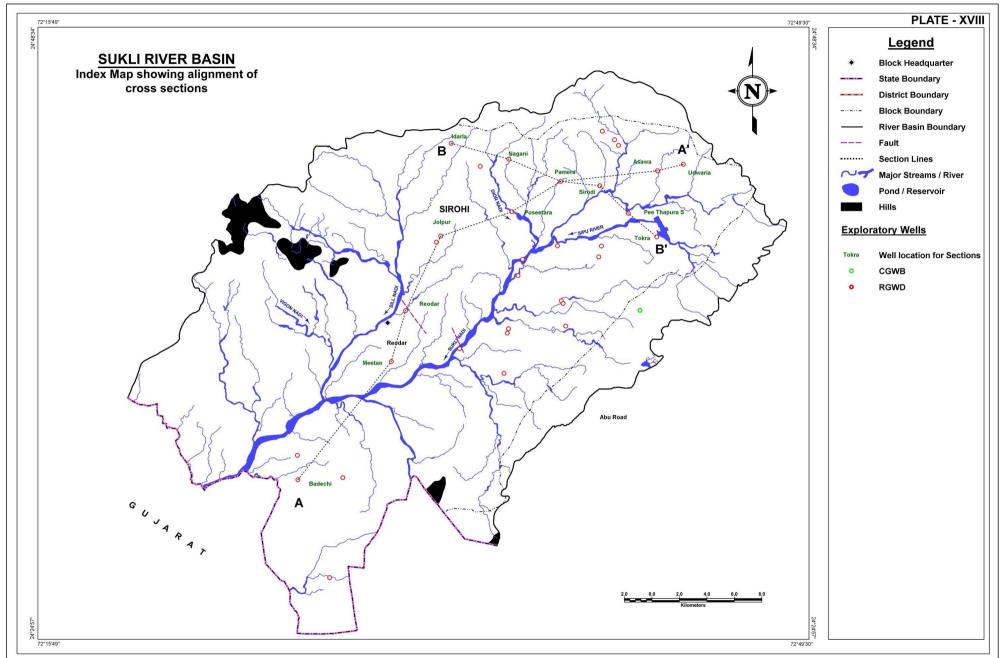
Unconfined aquifer	District wise area coverage (sq km)
Thickness (m)	Sirohi
< 10	62.9
> 10	12.7
Total	75.60


Hardrock areas:

Unconfined aquifer	District wise area coverage (sq km)
Thickness (m)	Sirohi
<10	400.0
10-20	440.1
> 20	17.7
Total	857.80

CROSS SECTIONS

SUKLI RIVER BASIN


Several hydrogeologic cross sections have been drawn to better decipher the sub-surface distribution of lithology. These sections have been overlaid with geological maps and structural faults if there are any have been transferred for verification of their impact on sub-surface material disposition. The alignment of the cross sections is shown in Plate – XVIII and corresponding sections are presented in Plates – XIX to XX. The broad alignment of the sections is as given below:

Name of Section Line	Orientation	
Section AA'	SW – NE	
Section BB'	W – E	

CROSS SECTIONS

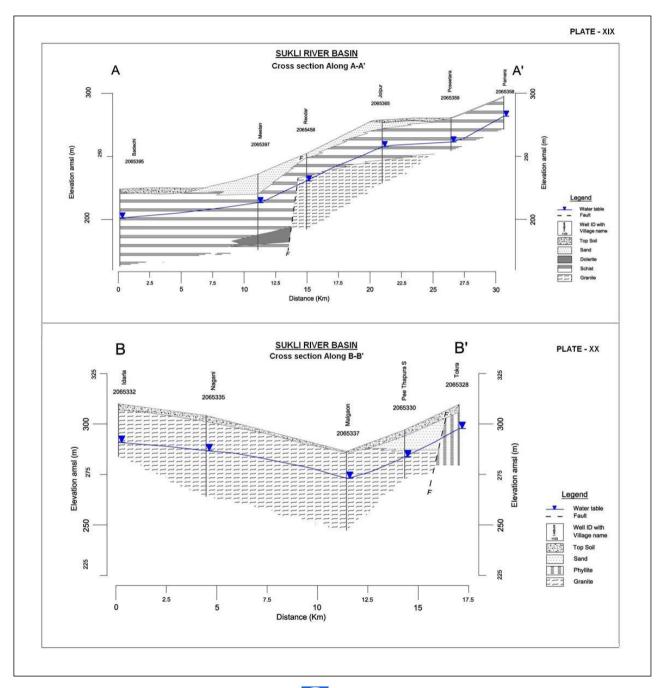
SUKLI RIVER BASIN

Section A-A':

The section A-A' (Plate – XIX) trends in SW-NE direction, extending to a length of about 30km. The lithologs of 6 boreholes along with surrounding well information has been taken into account while preparing the section. The section depicts a predominantly hardrock presence in the section. Schist is present from southwest to northeast in all the wells however, a tentative fault seems to have brought the granites in juxtaposition against schist. Small lens of dolerite is present in the southern part of the section but is of limited spatial distribution. Alluvium represented by sand is seen in the middle of the section but lies above the ground water level thus of not much significance from ground water storage perspective. Topography is higher in the northeast and lower in the southwest.

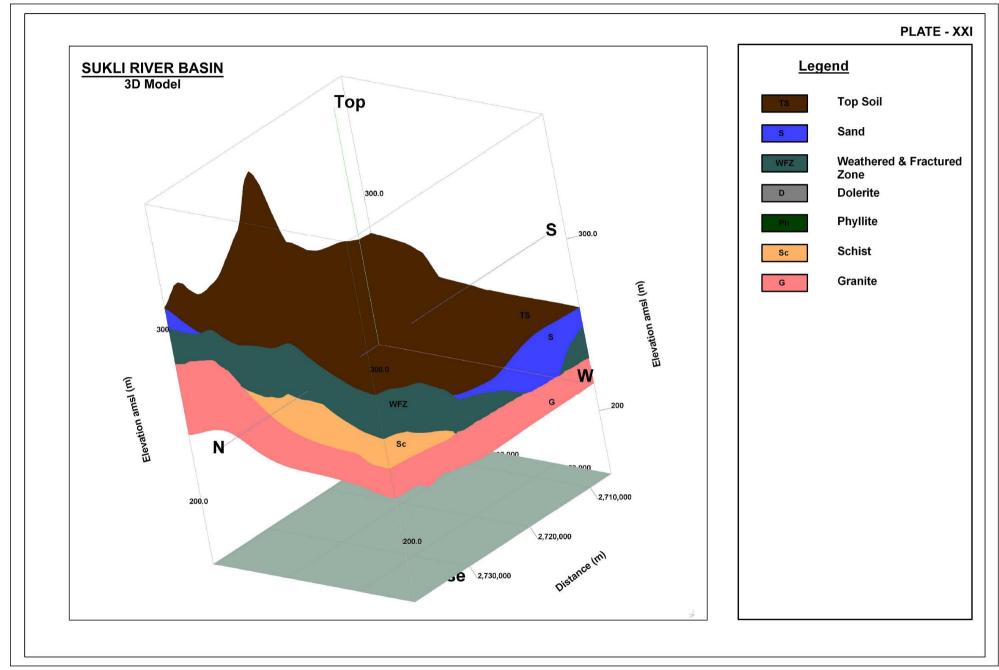
The water table elevation varies from 200 m amsl to 280 m amsl following the surface topography.

Section B-B':

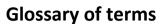

The section B-B' (Plate – XX) has been selected to represent a NW-SE profile of the sub-surface covering a length of about 17.5km. The lithologs of 5 boreholes along with surrounding well information is taken into account while preparing the section. Granite is predominant in this section overlain by topsoil in most part of the section. In the southeastern part of the profile a Fault is present separating granite in the southeast from sand from phyllite to northwest. The alluvial sand however having aboutu 20m in thickness, seem to have largely remained above water table and therefore may not be in a position to form aquifer in the area.

Water table elevation varies from 290 m amsl to 295 m amsl in this profile and water from both sides flows towards centre which also is the topographic low in the section.

3D MODEL OF AQUIFERS

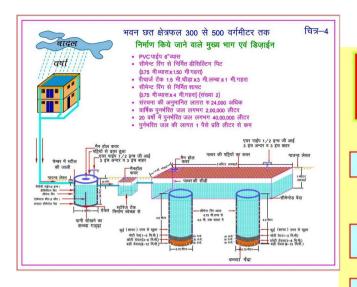

SUKLI RIVER BASIN

The continuous litho-stratigraphic model has been developed for the Sukli River Basin using the data of scattered exploratory boreholes as input. 3D model depicts the sub-surface aquifer disposition of litho-stratigraphic units forming aquifers, aquicludes and aquitards in the area. Plate –XXI presents 3D model depicting the various litho-stratigraphic units in the entire river basin. From this model it is apparent that beneath the top soil there is a persistent weathered and fractured bed rock acting as unconfined aquifers. Alluvium consisting mainly of sand, having limited occurrence in the western part of the area is acting as unconfined alluvial aquifer in the basin. Gneiss is underlying the weathered and fractured hard rock zone and alluvium of the area, behaving as an aquitard, is helping the overlying alluvial and hard rock aquifer to hold water. Schist, Phyllite and Dolerite overlay the Granites and when fractured, constitute good aquifers in the basin.

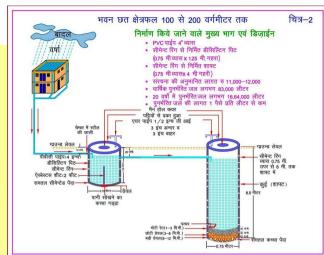


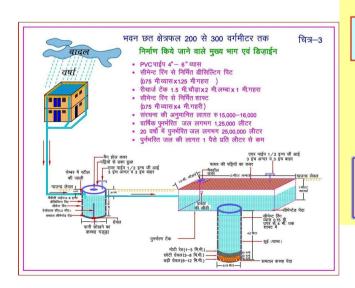
S. No.	Technical Terms	Definition	
	ACLUSED	A saturated geological formation which has good permeability to	
1	AQUIFER	supply sufficient quantity of water to a Tube well, well or spring.	
2	ARID CLIMATE	Climate characterized by high evaporation and low precipitation.	
3	ARTIFICIAL RECHARGE	Addition of water to a ground water reservoir by man-made activity	
		The sum total of all atmospheric or meteorological influences	
4	CLIMATE	principally temperature, moisture, wind, pressure and evaporation	
		of a region.	
5	CONFINED AQUIFER	A water bearing strata having confined impermeable overburden. In	
	CONTINED AQUILER	this aquifer, water level represents the piezometric head.	
6	CONTAMINATION	Introduction of undesirable substance, normally not found in water,	
		which renders the water unfit for its intended use.	
7	DRAWDOWN	The drawdown is the depth by which water level is lowered.	
8	FRESH WATER	Water suitable for drinking purpose.	
9	GROUND WATER	Water found below the land surface.	
10	GROUND WATER BASIN	A hydro-geologic unit containing one large aquifer or several	
10	GROOND WATER DASIN	connected and interrelated aquifers.	
11	GROUND WATER	The natural infiltration of surface water into the ground.	
	RECHARGE		
12	HARD WATER	The water which does not produce sufficient foam with soap.	
13	HYDRAULIC	A constant that serves as a measure of permeability of porous	
13	CONDUCTIVITY	medium.	
14	HYDROGEOLOGY	The science related with the ground water.	
15	HUMID CLIMATE	The area having high moisture content.	
16	ISOHYET	A line of equal amount of rainfall.	
17	METEOROLOGY	Science of the atmosphere.	
18	PERCOLATION	It is flow through a porous substance.	
19	PERMEABILITY	The property or capacity of a soil or rock for transmitting water.	
20	На	Value of hydrogen-ion concentration in water. Used as an indicator	
	pri	of acidity (pH < 7) or alkalinity (pH > 7).	
21	PIEZOMETRIC HEAD	Elevation to which water will rise in a piezometers.	
22	RECHARGE	It is a natural or artificial process by which water is added from	
		outside to the aquifer.	
23	SAFE YIELD	Amount of water which can be extracted from ground water without	
		producing undesirable effect.	
24	SALINITY	Concentration of dissolved salts.	
25	SEMI-ARID	An area is considered semiarid having annual rainfall between 10-20 inches.	
26	SEMI-CONFINED	Aquifer overlain and/or underlain by a relatively thin semi-pervious	
26	AQUIFER	layer.	
27	SPECIFIC YIELD	Quantity of water which is released by a formation after its	
21	SPECIFIC TIELD	complete saturation.	
28	TOTAL DISSOLVED	Total weight of dissolved mineral constituents in water per unit	
		volume (or weight) of water in the sample.	

(Contd...)

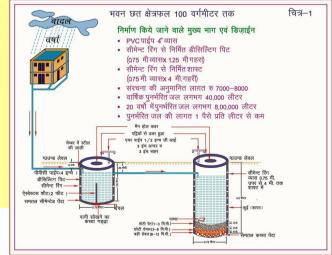


S. No.	Technical Terms	Definition	
		It is defined as the rate of flow through an aquifer of unit width and	
29	TDANICALICCIDILITY	total saturation depth under unit hydraulic gradient. It is equal to	
29	TRANSMISSIBILITY	product of full saturation depth of aquifer and its coefficient of	
		permeability.	
30	UNCONFINED AQUIFER	A water bearing formation having permeable overburden. The	
30	UNCONFINED AQUIFER	water table forms the upper boundary of the aquifer.	
31	UNSATURATED ZONE	The zone below the land surface in which pore space contains both	
31	UNSATURATED ZUNE	water and air.	
32	WATER CONSERVATION	Optimal use and proper storage of water.	
33	WATER RESOURCES	Availability of surface and ground water.	
34	WATER RESOURCES	Planned development, distribution and use of water resources.	
34	MANAGEMENT		
35	WATER TABLE	Water table is the upper surface of the zone of saturation at	
	WATER TABLE	atmospheric pressure.	
36	ZONE OF SATURATION	The ground in which all pores are completely filled with water.	
37	ELECTRICAL	Flow of free ions in the water at 25C mu/cm.	
37	CONDUCTIVITY		
38	CROSS SECTION	A Vertical Projection showing sub-surface formations encountered in	
30	CNOSS SECTION	a specific plane.	
39	3-D PICTURE	A structure showing all three dimensions i.e. length, width and	
33		depth.	
40	GWD	Ground Water Department	
41	CGWB	Central Ground Water Board	
42	CGWA	Central Ground Water Authority	
43	SWRPD	State Water Resources Planning Department	
44	EU-SPP	European Union State Partnership Programme	
45	Details of drainage lines and physical features of land surfa		
73	101001041111	map.	
46	GEOLOGY	The science related with the Earth.	
47	GEOMORPHOLOGY	The description and interpretation of land forms.	
		Monitoring of Ground Water level from the selected	
48	PRE MONSOON SURVEY	DKW/Piezometer before Monsoon (carried out between 15th May	
		to 15th June)	
	POST-MONSOON	Monitoring of Ground Water level from the selected	
49	SURVEY	DKW/Piezometer after Monsoon (carried out between 15th	
	SURVET	October to 15th November)	
50	PIEZOMETER	A non-pumping small diameter bore hole used for monitoring of	
30	static water level.		
51	GROUND WATER	Change in static water level below ground level.	
	FLUCTUATION		
52	WATER TABLE	The static water level found in unconfined aquifer.	
53	DEPTH OF BED ROCK	Hard & compact rock encountered below land Surface.	
54	G.W. MONITORING	Dug wells selected on grid basis for monitoring of state water level.	
	STATION		
55	EOLIAN DEPOSITS	Wind-blown sand deposits	





भूजल में घुले मुख्य तत्वों की अधिकता का मानव शरीर पर दुष्प्रभाव



सल्फेट-अधिकता में मैग्नेशियम के साथ मिलकर दस्तावर

Myths	and	Facts	about	Ground	Water

S No	Myths	Facts	
1	What is Ground Water	Water which occurs below the land in geological	
	an underground lake	formations/rocks is Ground water	
	a net work of underground rivers		
	a bowl filled with water		
2	Ground Water occurs everywhere beneath the Land Surface	Not really, it depends on the nature of rock formation	
3	There is a relationship between ground water and surface water	Not all the places. Near streams/rivers there is relation	
4	Groundwater is not renewable resource	It is renewable source and every year it is being recharged through rain/applied irrigation etc	
5	Ground water is unlimited and deeper you drill more discharge	It is limited to annual recharge from rain/applied irrigation. The discharge may not increase if you go deeper	
6	Ground Water moves rapidly	The movement of ground water is very slow	
7	Ground water pumped from wells is thousands of years old	Generally the ground water being tapped through wells is a few years old	
8	If water taste good—it is safe to drink	It may have other chemicals e.g. fluoride, nitrates etc which are harmful	
9	Water from free flowing tube wells is very pure	y This water can also be contaminated so test before use	
10	If I recharge my TW/DW/HP it will not benefit me	t It will also benefit you and also adjoing wells	
11	There is no static ground water resources in Rajasthan	Rajasthan is also having Static GW resources, and being tapped in most of areas as GW annual withdrawal is more than annual recharge	
12	I cannot meet annual cooking and drinking	The water requirement for drinking and cooking is only 8	
	water requirement by rain water harvesting	lit/day. You can harvest this water for family of 5 persons from roof top or paved area of 75 Sq m to meet annual requirement	
13	You can increase ground water recharge	This can be done by harvesting the rain water and storing	
		in sub surface reservoir (GW) by constructing the recharge structures	
14	You cannot use abandoned TW/HP/DW for	These should be used as recharge structures as harvested	
	ground water recharge	rain water is directly put into GW reservoir	
15	Putting waste near HP/TW will not cause any problem	Such actions will pollute wells and water	

Rolta India Limited

Central & Registered Office

Rolta Tower A. Rolta Technology Park, MIDC, Andheri (East), Mumbai - 400 093 Tel: +91 (22) 2926 6666, 3087 6543 Fax: +91 (22) 2836 5992

Email: indsales@rolta.com

www.rolta.com