

.

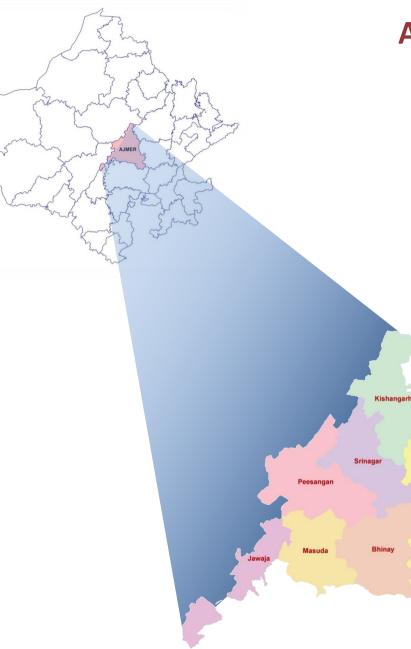
Hydrogeological Atlas of Rajasthan Ajmer District

Ajmer Srinagar

2013

Peesa

Masuda


Arain

Kekri

Hydrogeological Atlas of Rajasthan

Ajmer District

Contents:

List of Plates	Title	Page No.
Plate I	Administrative Map	2
Plate II	Topography	4
Plate III	Rainfall Distribution	4
Plate IV	Geological Map	6
Plate V	Geomorphological Map	6
Plate VI	Aquifer Map	8
Plate VII	Stage of Ground Water Development (Block wise) 2011	8
Plate VIII	Location of Exploratory and Ground Water Monitoring Stations	10
Plate IX	Depth to Water Level (Pre-Monsoon 2010)	10
Plate X	Water Table Elevation (Pre-Monsoon 2010)	12
Plate XI	Water Level Fluctuation (Pre-Post Monsoon 2010)	12
Plate XII	Electrical Conductivity Distribution (Average Pre-Monsoon 2005-09)	14
Plate XIII	Chloride Distribution (Average Pre-Monsoon 2005-09)	14
Plate XIV	Fluoride Distribution (Average Pre-Monsoon 2005-09)	16
Plate XV	Nitrate Distribution (Average Pre-Monsoon 2005-09)	16
Plate XVI	Depth to Bedrock	18
Plate XVII	Map of Unconfined Aquifer	18
	Glossary of terms	19

Arain

Kekri

Location:

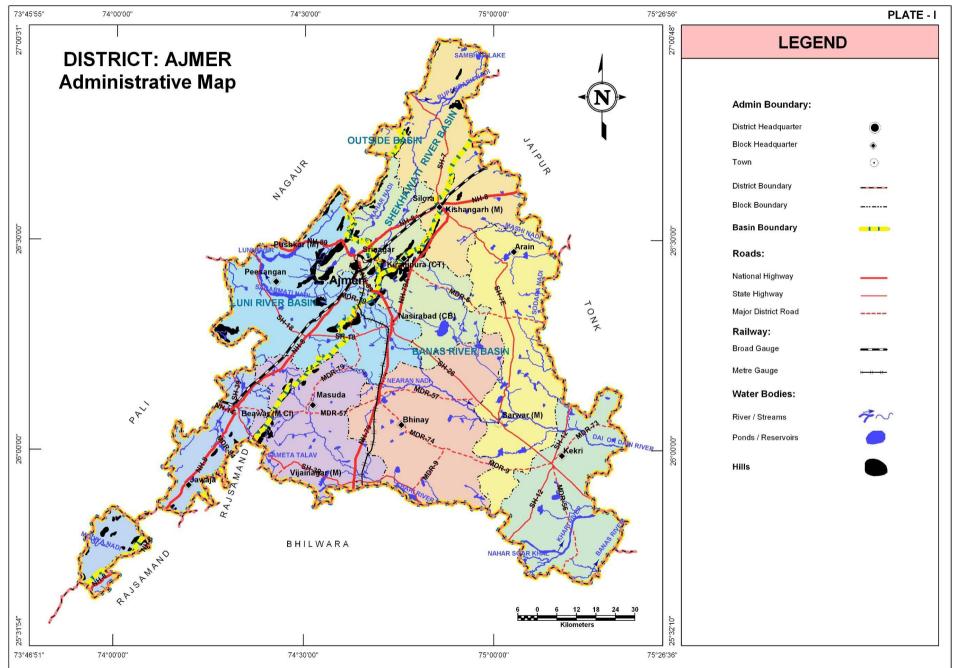
Ajmer district is located in the central part of Rajasthan. It is bounded in the northeast by Jaipur district, in the east by Tonk district, south by Bhilwara and Rajsamand districts, Pali district in the west and Nagaur in the northwest. It stretches between 25° 38' 48.84" to 26° 58' 42.97" North latitude and 73° 53' 48.20" to 75° 21' 22.73" East longitude covering area of 8,484.1 sq kms. Major part of the district has a systematic drainage system, being covered by parts of several basins namely 'Banas River Basin','Luni River Basin' and 'Shekhawati River Basin'.

Administrative Set-up:

Ajmer district is administratively divided into eight Blocks. The following table summarizes the basic statistics of the district at block level.

S. No.	Block Name	Population	Area	% of District	Total Number of
3. NO.	DIOCK INdille	(Based on 2001 census)	(sq km)	Area	Towns and Villages
1	Arain	1,49,588	1,211.0	14.3	130
2	Bhinay	1,55,111	1,193.1	14.1	128
3	Jawaja	2,81,660	696.0	8.0	201
4	Kekri	1,75,056	997.7	11.8	101
5	Kishangarh	2,69,696	1,187.1	14.0	115
6	Masuda	1,87,295	895.3	10.6	144
7	Peesangan	3,00,380	1,320.4	15.6	130
8	Srinagar	6,60,662	983.5	11.6	98
	Total	21,79,448	8,484.1	100.0	1,047

Ajmer district has 1,047 towns and villages, out of which eight are block headquarters as well.


Climate:

January is the coldest month with mean maximum and minimum temperatures being lowest at 22.7 °C & 7.6 °C. Temperature in summer month June, reaches up to 39.5 °C. There is drop in temperature due to onset of monsoon and rises again in the month of September. Atmosphere is generally dry except during the monsoon period. The humidity is highest in August with mean daily relative humidity 80%. Mean annual rainfall of the district is 453.2mm.

The district is broadly triangular in shape. It is generally a plain area interspersed with low hills of Aravalli range running roughly NE-SW direction and irregular terrain lying in the southwestern part of the district. The Kekri block forms the southeastern part of the district, and is a level plain; The Kishangarh block which is in the northeastern portion of the district is sandy except for a few isolated hills. The major rivers of the district are Banas, Khari, Sagarmati and Rupnagar, which developed very good drainage system of the district along with their tributaries like Nearan, Mashi, Sodara and Mahar etc. Minimum elevation (301 m) is found in Kekri block whereas highest elevation is reached (870 m) in Peesangan block.

S. No.	Block Name	Minimum Elevation (m amsl)	Maximum Elevation (m amsl)
1	Arain	326.4	421.9
2	Bhinay	347.3	689.0
3	Jawaja	377.6	819.8
4	Kekri	301.0	547.3
5	Kishangarh	360.8	717.5
6	Masuda	390.1	584.5
7	Peesangan	366.4	870.0
8	Srinagar	367.6	850.9

Table: Block wise minimum and maximum elevation

RAINFALL

The rainfall in this district is scanty and erratic. The general distribution of rainfall across can be visualized from isohyets presented in the Plate III. Interestingly, the southcentral part receives more rainfall as compared to southwest and it gradually reduces towards North. Maximum annual rainfall is noticed in Bhinay block whereas minimum in Jawaja block. Average annual rainfall in Ajmer district was about 722 mm in the year 2010.

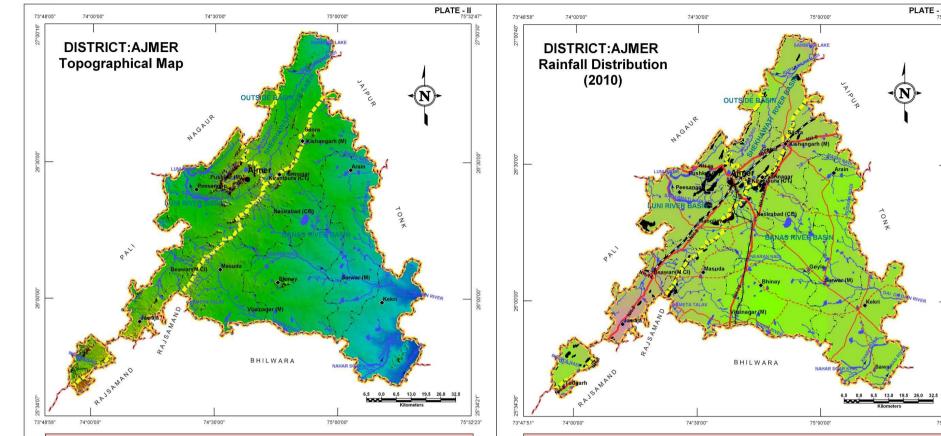

Block Name	Minimum Annual Rainfall (mm)	Maximum Annual Rainfall (mm)	Average Annual Rainfall (mm)		
Arain	697.8	851.8	795.4		
Bhinay	789.9	927.7	865.2		
Jawaja	233.6	746.4	564.6		
Kekri	684.9	815.3	756.6		
Kishangarh	554.2	785.1	668.2		
Masuda	524.6	910.9	712.8		
Peesangan	630.4	830.6	699.4		
Srinagar	610.3	835.8	714.0		

Table: Block wise annual rainfall statistics (derived from year 2010 meteorological station data)

Elevation (m amsl):

750

625

500

375

LEGEND

Admin Boundary:

District Headquarter

Block Headquarter

District Boundary

Block Boundary

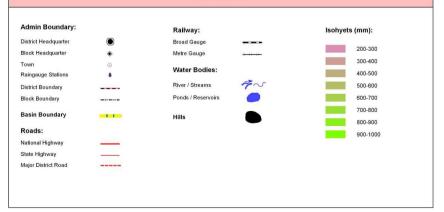
Basin Boundary

Water Bodies:

River / Streams

Source : SRTM DEM

Ponds / Reservoirs


...

-

7~

Town

LEGEND

75°30'47"

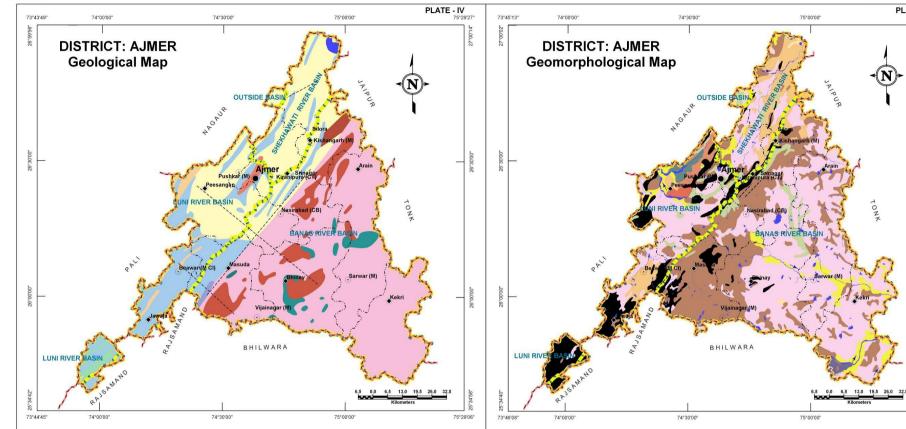
The geological setting of the Ajmer district is represented by Bhilwara and Delhi Super Groups, which have been further divided into several Groups and Formations. The rocks of Bhilwara Super Group occur from Arain block in northeast through Bhinay up to Kekri block area, underlying the plains and comprised of metasedimentary sequences with associated magmatic complex and igneous rocks. The Aravalli range running in NNE-SSW direction is occupied by the rocks of Delhi Super Group in the southern part which comprises of calcareous, argillaceous and arenaceous metasedimentary sequences with associated volcanic and igneous rocks.

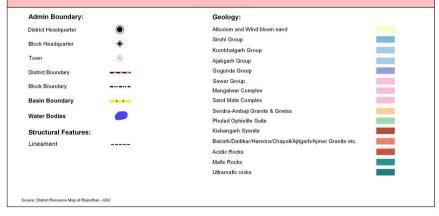
Super Group	Group	Formation				
	Recent to Sub-recent	Alluvium and wind-blown sand sub-Recent				
	Intrusion (Erinpura Granite)	Sendra-Ambaji granite Gneiss and Migamatite				
	Kumbhalgarh	Calc-schist, calcgneiss marble, garnet, biotite schist quartzite, mica schist				
Delhi	Ajabgarh	Quartzite, Calcgneiss, mica-schist and marble				
	Alwar	Metaconglomerate quartzite mica-schist				
	XX	XXUnconformityXXXXX				
Bhilwara	Sawar	Dolomite, dolomitic marble, quartzite, garnetiferous mica schist.				
	XX	XXUnconformityXXXXXX				
	Mangalwar complex	Migmatite, gneisses, mica-schist sillimatite, mica-schist para amphibolite impure marble				
	XX	XXUnconformityXXXXX				
	Sandmata complex	Para-gneisses, migmatite, pyroxene granulite, marble, ultramafics				

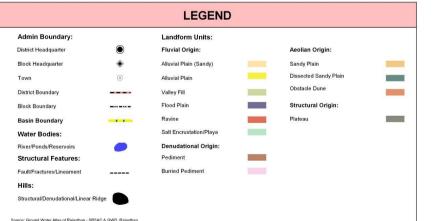
GEOMORPHOLOGY

Table: Geomorphologic units, their	description and distribution
------------------------------------	------------------------------

Origin	Landform Unit	Description
	Dissected Sandy Plain	Sandy plain highly dissected by stream and drainage.
Aeolian	Obstacle Dune	Formed on windward/leeward sides of obstacle like isolated hills or continuous chain of hills, dune to obstruction in path of sand laden winds. Badly dissected well cemented
/ conditi	obstacle buile	and vegetated.
	Sandy Plain	Formed of aeolian activity, wind-blown sand with gentle sloping to undulating plain, comprising of coarse sand, fine sand, silt and clay.
Denudational	Buried Pediment	Pediment covers essentially with relatively thicker alluvial, colluvial or weathered materials.
Denudational	Pediment	Broad gently sloping rock flooring, erosional surface of low relief between hill and plain, comprised of varied lithology, criss-crossed by fractures and faults.
	Alluvial Plain	Mainly undulating landscape formed due to fluvial activity, comprising of gravels, sand, silt and clay. Terrain mainly undulating, produced by extensive deposition of alluvium.
Fluvial	Alluvial Plain (Sandy)	Flat to gentle undulating plain formed due to fluvial activity, mainly consists of gravels, sand, silt and clay with unconsolidated material of varying lithology, predominantly
	Alluviai Fialli (Salluy)	sand along river.
	Flood Plain	The surface or strip of relatively smooth land adjacent to ariver channel for med by river and covered with water when river overflows its bank. Normally subject to periodic flooding.
	Valley Fill	Formed by fluvial activity, usually at lower topographic locations, comprising of boulders, cobbles, pebbles, gravels, sand, silt and clay. The unit has consolidated sediment deposits.
Fluvial	Ravine	Small, narrow, deep, depression, smaller than gorges, larger than gulley, usually carved by running water.
	Salt Encrustation/Playa	Topographical depression comprising of clay, silt, sand and soluble salts, usually undrained and devoid of vegetation.
Structural	Plateau	Formed over varying lithology with extensive, flat, landscapes, bordered by escarpment on all sides. Essentially formed horizontally layered rocky marked by extensive flat top and steep slopes. It may be criss crossed by lineament.
	Denudational,	Steep sided, relict hills undergone denudation, comprising of varying lithology with joints, fractures and lineaments.
Hills	Structural Hill, Linear	Linear to arcuate hills showing definite trend-lines with varying lithology associated with folding, faulting etc.
	Ridge	Long narrow low-lying ridge usually barren, having high run off may form over varying lithology with controlled strike.






PLATE - V 75°29'46"

75°29'25"

LEGEND

In Ajmer district, aquifers are formed in Gneiss, Schist and Younger alluvium. Weathered and fractured parts of the massive gneiss and schist contribute to aquifer formation whereas the sandy, gravelly and other granular parts of alluvium constitute aquifers. Gneiss is the most predominant aquifer type with more than 64% spatial coverage and is present in the eastern part of the district. The schistose aquifers are formed around the hilly areas of Aravalli range and alluvium, primarily wind-blown sand is found in the northwestern part of the district around Ajmer city.

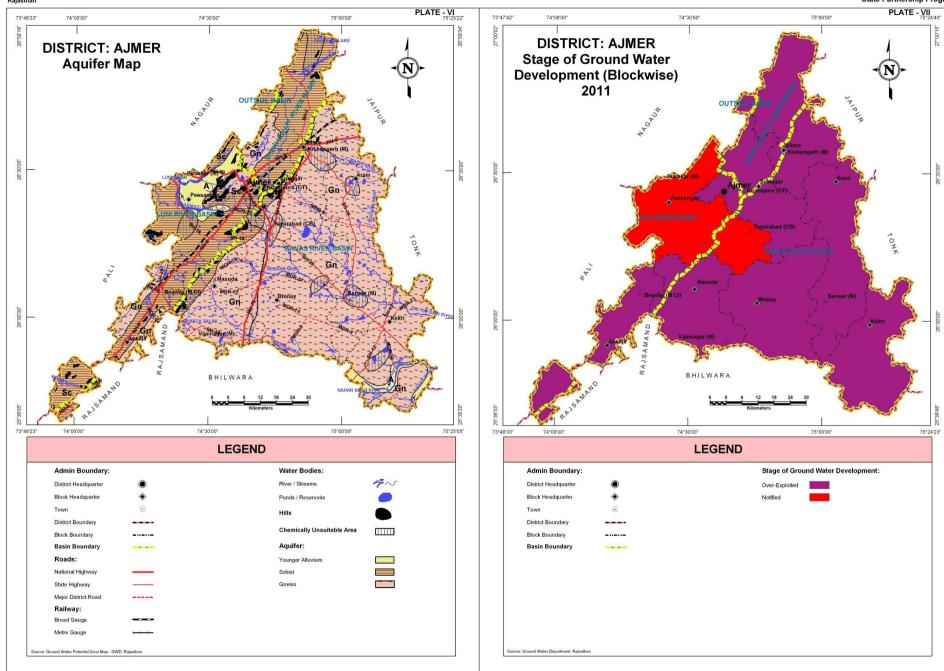
Aquifer in Potential Zone	Area (sq km)	% age of district	Description of the unit/Occurrence
Younger Alluvium			It is largely constituted of Aeolian and Fluvial sand, silt, clay, gravel and
Tounger Anuvium	392.2	4.6	pebbles in varying proportions.
Schist			Medium to fine grained compact rock. The litho units are soft, friable and
SCHIST	2,357.4	27.8	have closely spaced cleavage.
Gneiss	5,464.1	64.4	Comprises of porphyritic and non-porphyritic gneissic complex.
Non Potential Zone			
(Hills)	270.4	3.2	
Total	8484.1	100.0	

Table: aquifer potential zones their area and their description

STAGE OF GROUND WATER DEVELOPMENT

Most of the blocks in the district fall under the 'Over Exploited' category indicating that the ground water is under stress and exploitation exceeding recharge. One of the blocks

is in 'notified' category suggests severely stressed ground water situation.


Categorization on the basis of stage of development of ground water	Block Name				
Over Exploited	Bhinay, Kishangarh, Kekri, Arain, Masuda, Jawaja, Srinagar				
Notified	Peesangan				

Basis for categorization: Ground water development >100% - Over-Exploited. In Notified blocks development of GW is not permitted any more.

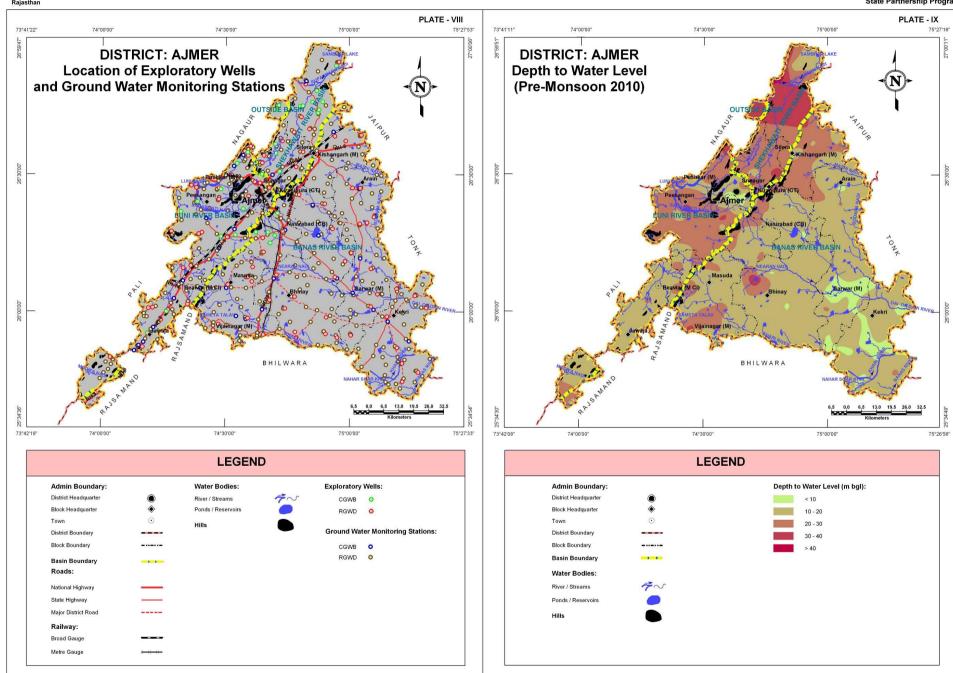
LOCATION OF EXPLORATORY AND GROUND WATER MONITORING WELLS

The district has a well distributed network of large number of exploratory wells (117) and ground water monitoring stations (386) in the district owned by RGWD (88 and 352 respectively) and CGWB (29 and 34 respectively). The exploratory wells have formed the basis for delineation of subsurface aquifer distribution scenario in three dimensions. Benchmarking and optimization studies suggest that ground water levels are being well monitored through existing network and for better monitoring of ground water quality only one well needs to be added to existing network in Kekri block.

Block Name	Explo	oratory W	/ells		ound Wat		Recommended additional wells for optimization of monitoring network			
	CGWB	RGWD	Total	CGWB RGWD To		Total	Water Level	Water Quality		
Arain	-	9	9	6	42	48	-	-		
Bhinay	-	12	12	2	48	50	-	-		
Jawaja	2	11	13	7	36	43	-	-		
Kekri	-	8	8	2	46	48	-	1		
Kishangarh	10	12	22	3	41	44	-	-		
Masuda	-	8	8	4	38	42	-	-		
Peesangan	12	15	27	7	51	58	-	-		
Srinagar	5	13	18	3	50	53	-	-		
Total	29	88	117	34	352	386	0	1		

DEPTH TO WATER LEVEL (PRE MONSOON – 2010)

Depth to water level shows variation from less than 10m below ground level to >40m below ground level. The central and southeastern parts of the district including in the southern fringe have shown a generally not so deep ground water occurrence (i.e., within a depth range of 30m) whereas the northern parts (north of Kishangarh) have shown deep water levels reaching up to more than 40m below ground level. The shallow occurrence less than 10m bgl water level have reported in south eastern parts of the district around Sarwar and kekri.


Depth to water level		Block wise area coverage (sq km) *												
(m bgl)	Arain	Bhinay	Jawaja	Kekri	Kishangarh	Masuda	Peesangan	Srinagar	(sq km)					
<10	178.4	7.0	2.0	175.4	-	-	9.5	26.0	398.3					
10-20	994.9	1,093.0	597.0	817.9	213.4	623.6	384.8	493.9	5,218.5					
20-30	37.7	77.0	74.2	4.4	576.4	228.6	812.3	356.1	2,166.7					
30-40	-	16.1	-	-	350.3	6.5	23.8	21.7	418.4					
>40	-	-	-	-	11.8	-	-	-	11.8					
Total	1,211.0	1,193.1	673.2	997.7	1,151.9	858.7	1,230.4	897.7	8,213.7					

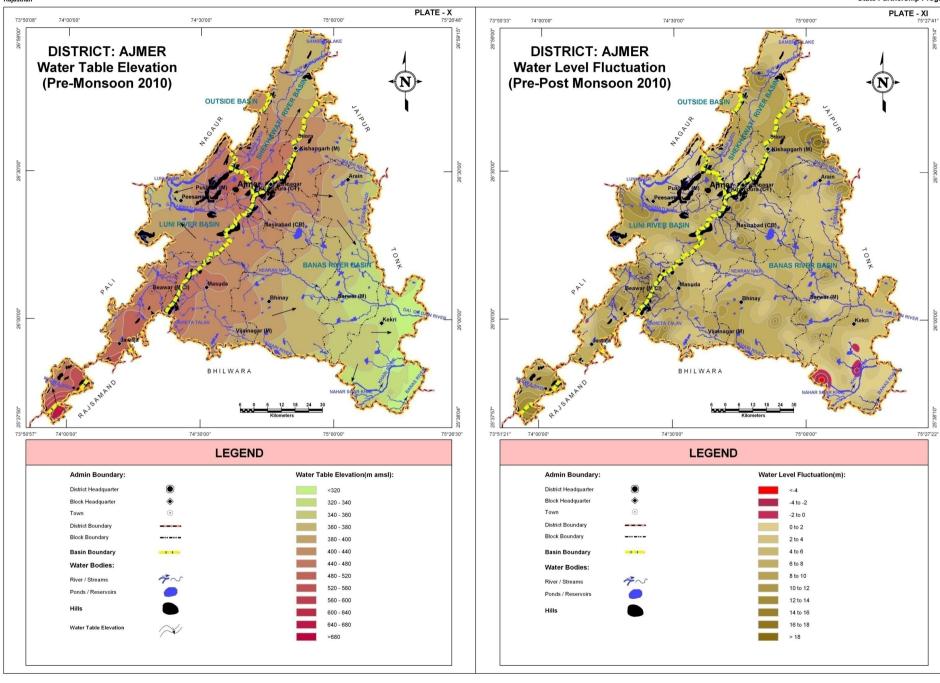
* The area covered in the derived maps is less than the total district area since the hills have been excluded from interpolation/contouring.

WATER TABLE ELEVATION (PRE MONSOON - 2010)

General flow direction of ground water is from northwest to southeast in the district. The western part near Peesangan) it assumes a flow direction towards west and in the north of Ajmer, a northeasterly direction. The minimum water table elevation (<320m amsl) is seen in the southeastern part of the district in Kekri block, the maximum elevation (>680m amsl) is observed in the southwestern part of the district in Jawja Block in the hilly area of Aravalli range.

	Block wise area (sq km) within water table elevation (m amsl) range											Total Area		
Block Name	< 320	320 - 340	340 - 360	360 - 380	380 - 400	400 - 440	440 - 480	480 - 520	520 - 560	560 - 600	600 - 640	640 - 680	> 680	(sq km)
Arain	-	227.7	451.0	310.6	178.6	43.1	-	-	-	-	-	-	-	1,211.0
Bhinay	-	-	137.1	588.0	338.1	129.9	-	-	-	-	-	-	-	1,193.1
Jawaja	-	-	-	-	1.9	79.7	266.1	184.2	83.1	21.3	18.8	18.1	-	673.2
Kekri	336.9	465.4	195.4	-	-	-	-	-	-	-	-	-	-	997.7
Kishangarh	-	-	0.4	299.5	368.5	433.5	50.0	-	-	-	-	-	-	1,151.9
Masuda	-	-	-	-	82.5	502.4	272.8	1.0	-	-	-	-	-	858.7
Peesangan	-	-	11.7	119.9	256.3	643.6	198.5	0.4	-	-	-	-	-	1,230.4
Srinagar	-	-	-	44.5	154.1	282.6	327.7	88.8	-	-	-	-	-	897.7
Total	336.9	693.1	795.6	1,362.5	1,380.0	2,114.8	1,115.1	274.4	83.1	21.3	18.8	18.1	-	8,213.7

WATER LEVEL FLUCTUATION (PRE TO POST MONSOON 2010)


A 2m contour interval adopted to visualize the ground water level fluctuation reveals a fall of 4 m in one area to rise in other areas reaching to more than 18m, as seen in Plate XI. The –ve fluctuation areas (indicated by red color regions) are the areas where overexploitation is taking place and even after monsoon recharge water level has not risen and has actually gone down with respect to pre-monsoon levels. Such large ground water depletion areas are located in the southeastern part of the district. Rest of the district has shown a general to significant rise in ground water level in the post-monsoon season with respect to pre-monsoon season. Maximum rise of more than 18m is noticed at eastern part of Kishangarh Block.

Water level			Blo	ck wise	area coverag	e (sq km)			Total Area
fluctuation range (m)	Arain	Bhinay	Jawaja	Kekri	Kishangarh	Masuda	Peesangan	Srinagar	(sq km)
<-4	-	-	-	3.5	-	-	-	-	3.5
-42	-	-	-	16.7	-	-	-	-	16.7
-2 - 0	-	-	1.4	48.4	-	-	-	-	49.8
0 – 2	34.3	-	12.6	257.6	45.6	8.2	93.6	19.2	471.1
2 – 4	393.1	93.5	33.1	297.9	114.5	144.7	117.0	115.0	1,308.8
4 – 6	408.2	401.0	42.7	275.0	117.5	189.5	244.5	236.9	1,915.3
6 – 8	217.4	493.1	143.1	89.5	256.3	231.5	389.5	296.5	2,116.9
8 - 10	83.8	182.5	201.6	9.1	348.4	169.9	221.1	143.4	1,359.8
10 - 12	48.6	21.3	142.6	-	154.8	63.4	104.5	61.0	596.2
12 – 14	22.0	1.7	78.6	-	56.2	48.2	54.3	25.4	286.4
14 - 16	3.6	-	17.5	-	29.6	3.3	5.9	0.3	60.2
16 - 18	-	-	-	-	22.7	-	-	-	22.7
>18	-	-	-	-	6.3	-	-	-	6.3
Total	1,211.0	1,193.1	673.2	997.7	1,151.9	858.7	1,230.4	897.7	8,213.7

GROUND WATER ELECTRICAL CONDUCTIVITY DISTRIBUTION

The Electrical conductivity (at 25°C) distribution map is presented in plate XII. The areas with moderately high EC values in ground water (2000-4000 µS/cm) are shown in green color and they together occupy almost 47% of the district area. The areas with low EC values (<2000 µS/cm) are shown in yellow color and occupy approximately 29% of the district area where the water is suitable for domestic purposes. Remaining part of the district (about 24%) has high EC values (>4000µS/Cm) in ground water and is shown in red color and water in this region is not suitable for domestic purpose.

Electrical Conductivity Ranges						B	lock wi	se area	coverage	(sq km)							Total Area
(μS/cm at 25°C)	Ara	in	Bhir	nay	Jaw	/aja	Ke	kri	Kishar	ngarh	Mas	suda	Peesa	ngan	Srin	agar	Total Area
(Ave. of years 2005-09)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq km)
< 2000	295.4	24.4	364.5	30.6	404.3	60.1	302.5	30.3	271.6	23.6	149	17.4	358.5	29.1	241.8	26.9	2387.6
2000-4000	456.8	37.7	604.1	50.6	233.7	34.7	346.7	34.8	537.1	46.6	488.3	56.8	660.2	53.7	413.9	46.1	3740.8
>4000	458.8	37.9	224.5	18.8	35.2	5.2	348.5	34.9	343.2	29.8	221.4	25.8	211.7	17.2	242	27	2085.3
Total	1211.0	100.0	1193.1	100.0	673.2	100.0	997.7	100.0	1151.9	100.0	858.7	100.0	1230.4	100.0	897.7	100.0	8213.7

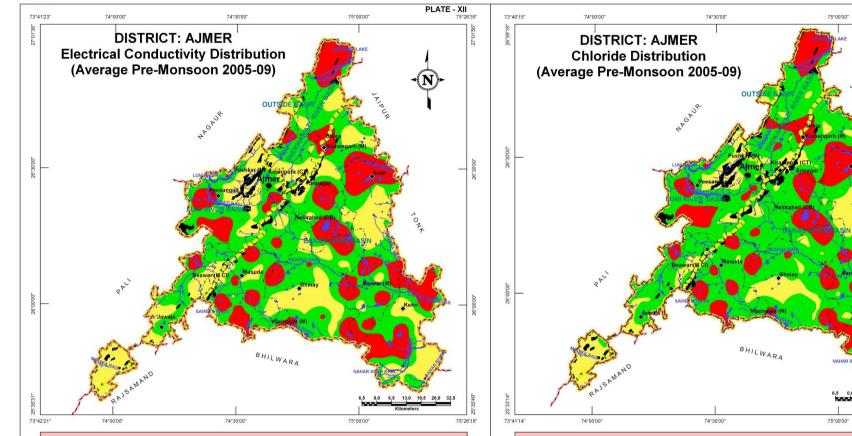
Table: Block wise area of Electrical conductivity distribution

GROUND WATER CHLORIDE DISTRIBUTION

The green colored regions in plate XIII are such areas where chloride concentration is moderately high (250 – 1000 mg/l) and these areas occupy approximately 62% of the district area. The area with high chloride concentration (>1000 mg/l) which is shown in red color occupies approximately 22% of the district area. These areas are as isolated pockets scattered in different parts of the entire district. The ground water in this high chloride region is not suitable for domestic purpose. Remaining part of the district area has low chloride concentration (< 250 mg/l) which is shown in yellow color and occupies approximately 16% of the district area. These areas are presents in eastern, southwestern part of the district, southern part of Kekri and central part of the Bhinay block. The water in this region is suitable for domestic purpose. Overall, the district seems to have very limited areas where freshwater is available.

				10					onac ai								
Chloride Concentration						B	lock wi	se area (coverage	(sq km)							Total Area
Range (mg/l)	Ara	in	Bhin	ay	Jaw	/aja	Ke	kri	Kishan	igarh	Mas	suda	Peesa	ngan	Srin	agar	Total Area
(Ave. of years 2005-09)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq km)
<250	162.7	13.4	219.3	18.4	304.8	45.3	202.7	20.3	85.8	7.5	61.4	7.2	172.6	14.0	92.3	10.3	1,301.6
250-1000	655.0	54.1	777.1	65.1	337.8	50.2	554.7	55.6	726.5	63.1	606.6	70.6	862.8	70.1	579.1	64.5	5,099.6
>1000	393.3	32.5	196.7	16.5	30.6	4.5	240.3	24.1	339.6	29.4	190.7	22.2	195.0	15.9	226.3	25.2	1,812.5
Total	1,211.0	100.0	1,193.1	100.0	673.2	100.0	997.7	100.0	1,151.9	100.0	858.7	100.0	1,230.4	100.0	897.7	100.0	8,213.7

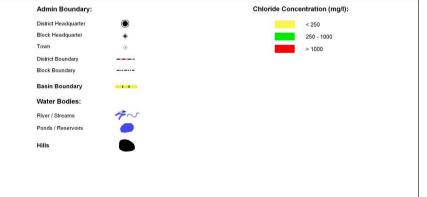
Table: Block wise area of Chloride distribution



6.5 13.0 19.5 26.0

32 6

75°25'09"


75°25'28"

LEGEND

LEGEND

DISTRICT – AJMER

The Fluoride concentration map is presented in Plate – XIV. In general, the district has moderate to high fluoride concentration in ground water. The areas with moderately high concentration (1.5 – 3.0 mg/l) are shown in green color and occupy approximately 57% of the district area. The areas with high fluoride concentration (>3.0 mg/l) seen as red color patches, are scattered in eastern and southeastern part of the district. The water in this region is not suitable for domestic purpose. Low fluoride concentration (i.e., >1.5 mg/l) area is shown with yellow color scattered, largely in western, northwestern and southwestern part of the district. Interestingly, the moderate and high fluoride concentration areas directly correlate with areas where aquifers are formed in Gneisses.

Fluoride concentration						B	lock wi	se area o	coverage	(sq km)							Total Area
Range (mg/l)	Ara	in	Bhir	nay	Jav	vaja	Ke	ekri	Kishar	ngarh	Mas	suda	Peesa	ngan	Srin	agar	Total Area
(Ave. of years 2005-09)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq km)
<1.5	158.6	13.1	99.3	8.3	440.6	65.4	45.7	4.6	225.5	19.6	94.1	11.0	449.5	36.5	221.9	24.7	1,735.2
1.5-3.0	544.9	45.0	617.6	51.8	232.0	34.5	568.6	57.0	770.9	66.9	651.5	75.8	726.0	59.0	536.6	59.8	4,648.1
>3.0	507.5	41.9	476.2	39.9	0.6	0.1	383.4	38.4	155.5	13.5	113.1	13.2	54.9	4.5	139.2	15.5	1,830.4
Total	1,211.0	100.0	1,193.1	100.0	673.2	100.0	997.7	100.0	1,151.9	100.0	858.7	100.0	1,230.4	100.0	897.7	100.0	8,213.7

٦

Table: Block	wise area	of Fluoride	distribution
--------------	-----------	-------------	--------------

GROUND WATER NITRATE DISTRIBUTION

High nitrate concentration in ground water renders it unsuitable for agriculture purposes. Plate – XV shows distribution of Nitrate in ground water. The moderately high nitrate concentration (50-100 mg/l) is shown in green color and occupies approximately 41% of the district area. The areas with high nitrate concentration (>100 mg/l) are shown in red color is seen largely major parts central areas in the district and partly in the north and southeast. The water in such areas is not suitable for agriculture purpose. The Area with low concentration (<50 mg/l) in yellow color patches scattered largely southern, southwestern and northeastern parts of the district. The water in this region is suitable for agriculture purpose.

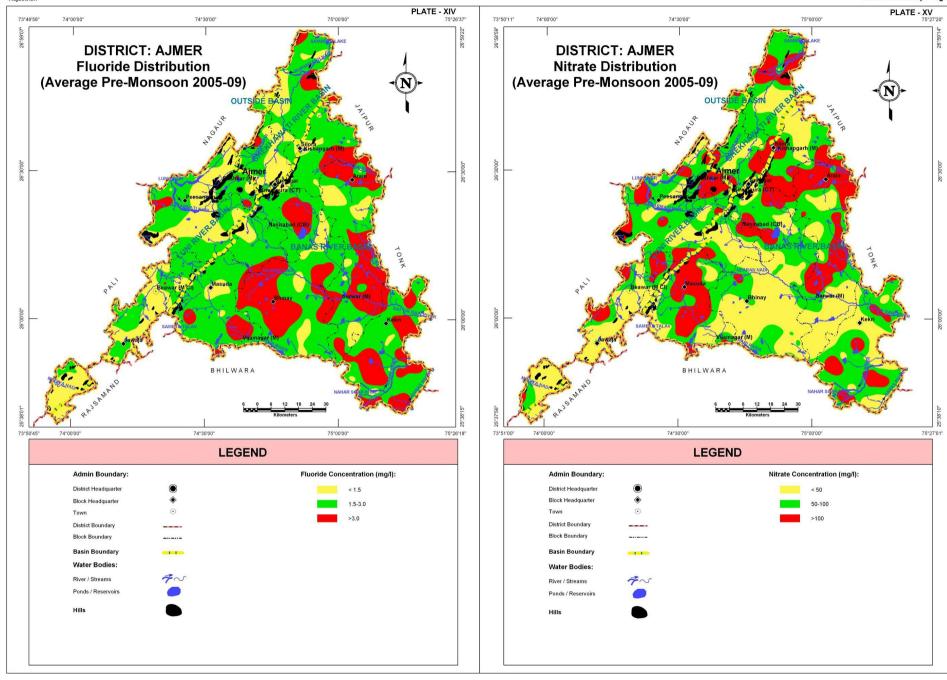

												•					
Nitrate concentration						B	lock wi	se area o	coverage	(sq km)							Total Area
Range (mg/l)	Ara	in	Bhir	ay	Jaw	/aja	Ke	kri	Kishan	garh	Mas	uda	Peesa	ngan	Srin	agar	Total Area (sq km)
(Ave. of years 2005-09)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	
<50	433.5	35.8	745.1	62.4	457.3	67.9	277.8	27.8	312.9	27.2	210.0	24.5	378.4	30.8	178.8	19.9	2,993.8
50-100	342.8	28.3	419.3	35.2	137.2	20.4	556.1	55.8	513.5	44.5	283.9	33.1	629.0	51.1	455.3	50.7	3,337.1
>100	434.7	35.9	28.7	2.4	78.7	11.7	163.8	16.4	325.5	28.3	364.8	42.4	223.0	18.1	263.6	29.4	1,882.8
Total	1,211.0	100.0	1,193.1	100.0	673.2	100.0	997.7	100.0	1,151.9	100.0	858.7	100.0	1,230.4	100.0	897.7	100.0	8,213.7

Table: Block wise area of Nitrate distribution

Depth to bedrock map of Ajmer district (Plate – XVI) reveals wide variation from less than 20m below ground level to reaching a maximum depth of more than 60m below ground level. The majority of the areas are covered by Gneiss and Schist. These rocks are overlain by alluvial deposits of sand, clay, silt and admixture of these in different proportions and thicknesses. On perusal of the map it can be interpreted that the bedrock is less in the entire eastern parts and as we move to central part of the district bedrock becomes deeper to about 20m bgl to 60m bgl. The maximum depth of bedrock encountered in the northern part (in Kishangarh block, >60m bgl) and southern part (in Jawja block, 40-60m bgl).

Danth to hadroak		Block wise area coverage (sq km)													Total Area		
Depth to bedrock	Ara	in	Bhir	nay	Jav	vaja	Ke	ekri	Kishar	ngarh	Mas	suda	Peesa	ngan	Srin	agar	Total Area
(m bgl)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq km)
<20	922.3	76.2	827.6	69.4	15.5	2.3	830.8	83.3	274.2	23.7	213.4	24.8	0.9	0.1	90.8	10.1	3,175.5
20 - 40	288.7	23.8	365.5	30.6	539.1	80.1	166.9	16.7	371.6	32.3	645.3	75.2	996.7	81.0	528.3	58.9	3,902.1
40 - 60	-	-	-	-	118.6	17.6	-	-	363.6	31.6	-	-	229.6	18.6	278.6	31.0	990.4
>60	-	-	-	-	-	-	-	-	142.5	12.4	-	-	3.2	0.3	-	-	145.7
Total	1,211.0	100.0	1,193.1	100.0	673.2	100.0	997.7	100.0	1,151.9	100.0	858.7	100.0	1,230.4	100.0	897.7	100.0	8,213.7

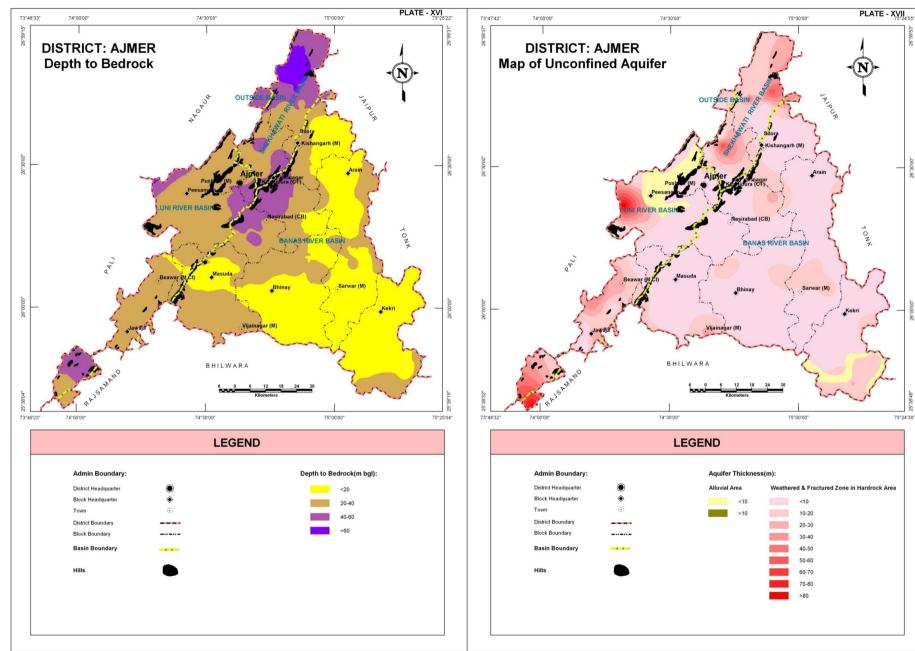
UNCONFINED AQUIFER

Aquifer formed from alluvial materials covers very small area (approximately 393 sq km) of the district. The saturated thickness of alluvial formation varies less than 10m to about 20m and largely found in northeastern part of Peesangan block.

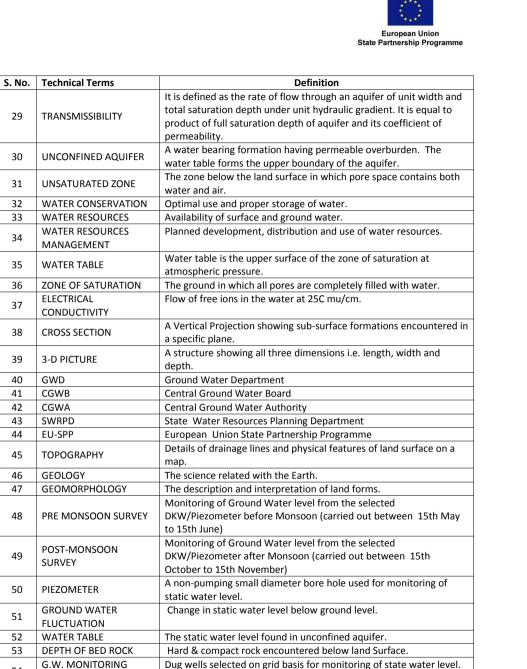
Weathered, fractured and jointed rock formations occurring at shallower depths constitute good unconfined aquifers. Such zone ranges in thickness from less than 10 meter to more than 80 meter, whereas the general thickness in the district is less than 30m. Southwestern part of the district in Jawaja block and northwestern part of Peesangan block have zones of very high thickness of aquifers in weathered/fractured hardrock (more than 80m), Kishangarh and Srinagar blocks have moderate thicknesses of up to 60m and shallow thickness has been reported in Arain, Bhinay, Kekri and Masuda blocks (less than 40m thickness).

Alluvial areas:

Unconfined			Ble	ock wis	e area covera	age (sq kn	n)		Total
Aquifer Thickness (m)	Arain	Bhinay	Jawaja	Kekri	Kishangarh	Masuda	Peesangaon	Srinagar	Area (sq km)
< 10	-	-	-	134.7	-	-	257.2	0.5	392.5
> 10	-	-	-	-	-	-	0.1	-	0.0
Total	-	-	-	134.7	-	-	257.3	0.5	392.5


Hard rock areas:

Unconfined			Blo	ck wise	area covera	ge (sq km)			Total
Aquifer Thickness (m)	Arain	Bhinay	Jawaja	Kekri	Kishangarh	Masuda	Peesangan	Srinagar	Area (sq km)
<10	983.3	1065.4	111.8	612	466.3	704.9	744.9	516.7	5,205.3
10-20	227.7	127.7	243.2	247.6	460.7	140.5	61.4	246.7	1,755.5
20-30	-	-	168.1	3.4	147.7	13.3	49.5	85.8	467.8
30-40	-	-	62.6	-	48.6	-	41.9	32.5	185.6
40-50	-	-	31.6	-	24.7	-	29.6	13	98.9
50-60	-	-	28.1	-	3.9	-	20.7	2.5	55.2
60-70	-	-	16	-	-	-	13.8	-	29.8
70-80	-	-	9.5	-	-	-	9	-	18.5
> 80	-	-	2.3	-	-	-	2.3	-	4.6
Total	1211.0	1193.1	673.2	863.0	1151.9	858.7	973.1	897.2	7,821.2

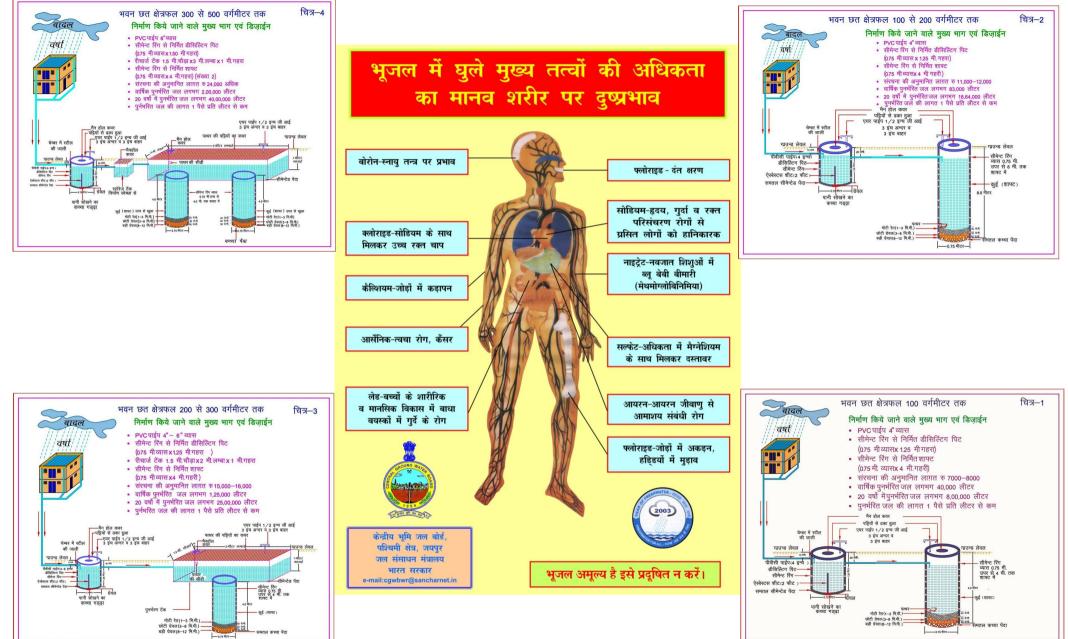


Glossary of terms

S. No.	Technical Terms	Definition
1	AQUIFER	A saturated geological formation which has good permeability to
-	Additen	supply sufficient quantity of water to a Tube well, well or spring.
2	ARID CLIMATE	Climate characterized by high evaporation and low precipitation.
3	ARTIFICIAL RECHARGE	Addition of water to a ground water reservoir by man-made activity
4	CLIMATE	The sum total of all atmospheric or meteorological influences principally temperature, moisture, wind, pressure and evaporation of a region.
5	CONFINED AQUIFER	A water bearing strata having confined impermeable overburden. In this aquifer, water level represents the piezometric head.
6	CONTAMINATION	Introduction of undesirable substance, normally not found in water, which renders the water unfit for its intended use.
7	DRAWDOWN	The drawdown is the depth by which water level is lowered.
8	FRESH WATER	Water suitable for drinking purpose.
9	GROUND WATER	Water found below the land surface.
10	GROUND WATER BASIN	A hydro-geologic unit containing one large aquifer or several connected and interrelated aquifers.
11	GROUND WATER RECHARGE	The natural infiltration of surface water into the ground.
12	HARD WATER	The water which does not produce sufficient foam with soap.
13	HYDRAULIC CONDUCTIVITY	A constant that serves as a measure of permeability of porous medium.
14	HYDROGEOLOGY	The science related with the ground water.
15	HUMID CLIMATE	The area having high moisture content.
16	ISOHYET	A line of equal amount of rainfall.
17	METEOROLOGY	Science of the atmosphere.
18	PERCOLATION	It is flow through a porous substance.
19	PERMEABILITY	The property or capacity of a soil or rock for transmitting water.
20	рН	Value of hydrogen-ion concentration in water. Used as an indicator of acidity (pH < 7) or alkalinity (pH > 7).
21	PIEZOMETRIC HEAD	Elevation to which water will rise in a piezometers.
22	RECHARGE	It is a natural or artificial process by which water is added from outside to the aquifer.
23	SAFE YIELD	Amount of water which can be extracted from ground water without producing undesirable effect.
24	SALINITY	Concentration of dissolved salts.
25	SEMI-ARID	An area is considered semiarid having annual rainfall between 10-20 inches.
26	SEMI-CONFINED AQUIFER	Aquifer overlain and/or underlain by a relatively thin semi-pervious layer.
27	SPECIFIC YIELD	Quantity of water which is released by a formation after its complete saturation.
28	TOTAL DISSOLVED SOLIDS	Total weight of dissolved mineral constituents in water per unit volume (or weight) of water in the sample.

Windblown sand deposits

(Contd...)


STATION

EOLIAN DEPOSITS

Raiasthan

Myths and Facts about Ground Water

S No	Myths	Facts
1	What is Ground Water an underground lake a net work of underground rivers a bowl filled with water 	Water which occurs below the land in geological formations/rocks is Ground water
2	Ground Water occurs everywhere beneath the Land Surface	Not really, it depends on the nature of rock formation
3	There is a relationship between ground water and surface water	Not all the places. Near streams/rivers there is relation
4	Groundwater is not renewable resource	It is renewable source and every year it is being recharged through rain/applied irrigation etc
5	Ground water is unlimited and deeper you drill more discharge	It is limited to annual recharge from rain/applied irrigation. The discharge may not increase if you go deeper
6	Ground Water moves rapidly	The movement of ground water is very slow
7	Ground water pumped from wells is thousands of years old	Generally the ground water being tapped through wells is a few years old
8	If water taste good—it is safe to drink	It may have other chemicals e.g. fluoride, nitrates etc which are harmful
9	Water from free flowing tube wells is very pure	This water can also be contaminated so test before use
10	If I recharge my TW/DW/HP it will not benefit me	It will also benefit you and also adjoing wells
11	There is no static ground water resources in Rajasthan	Rajasthan is also having Static GW resources, and being tapped in most of areas as GW annual withdrawal is more than annual recharge
12	I cannot meet annual cooking and drinking water requirement by rain water harvesting	The water requirement for drinking and cooking is only 8 lit/day. You can harvest this water for family of 5 persons from roof top or paved area of 75 Sq m to meet annual requirement
13	You can increase ground water recharge	This can be done by harvesting the rain water and storing in sub surface reservoir (GW) by constructing the recharge structures
14	You cannot use abandoned TW/HP/DW for ground water recharge	These should be used as recharge structures as harvested rain water is directly put into GW reservoir
15	Putting waste near HP/TW will not cause any problem	Such actions will pollute wells and water

No. No. of Co.

Rolta India Limited

Central & Registered Office Rolta Tower A, Rolta Technology Park, MIDC, Andheri (East), Mumbai - 400 093 Tel : +91 (22) 2926 6666, 3087 6543 Fax : +91 (22) 2836 5992 Email : indsales@rolta.com

www.rolta.com

.