

Hydrogeological Atlas of Rajasthan

Dungarpur District

Hydrogeological Atlas of Rajasthan

Dungarpur District

Contents:

List of Plates	Title	Page No.
Plate I	Administrative Map	2
Plate II	Topography	4
Plate III	Rainfall Distribution	4
Plate IV	Geological Map	6
Plate V	Geomorphological Map	6
Plate VI	Aquifer Map	8
Plate VII	Stage of Ground Water Development (Block wise) 2011	8
Plate VIII	Location of Exploratory and Ground Water Monitoring Stations	10
Plate IX	Depth to Water Level (Pre-Monsoon 2010)	10
Plate X	Water Table Elevation (Pre-Monsoon 2010)	12
Plate XI	Water Level Fluctuation (Pre-Post Monsoon 2010)	12
Plate XII	Electrical Conductivity Distribution (Average Pre-Monsoon 2005-09)	14
Plate XIII	Chloride Distribution (Average Pre-Monsoon 2005-09)	14
Plate XIV	Fluoride Distribution (Average Pre-Monsoon 2005-09)	16
Plate XV	Nitrate Distribution (Average Pre-Monsoon 2005-09)	16
Plate XVI	Depth to Bedrock	18
Plate XVII	Map of Unconfined Aquifer	18
	Glossary of terms	19

Location:

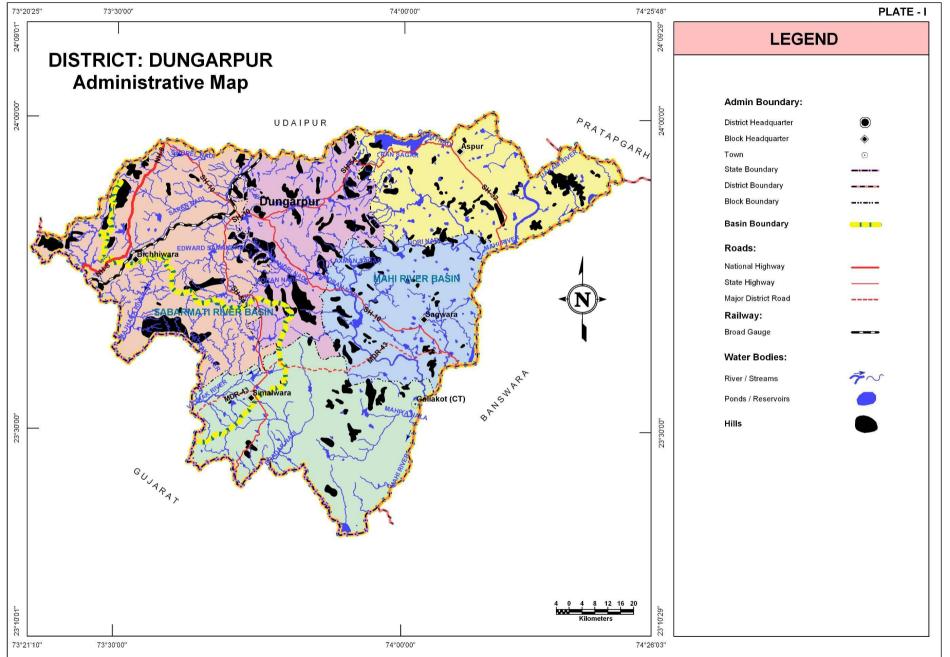
Dungarpur district is located in the southern part of Rajasthan. It is bounded in the north by Udaipur district and northeast by Pratapgarh districts, in the east by Banswara and the state of Gujarat constitutes the boundary in south and west. It stretches between 23° 19' 42.87" to 24° 00' 42.68" north latitude and 73° 20' 59.23" to 74° 23' 42.87" east longitude covering area of 3,770.6 sq km. The district is drained by two river basins namely 'Sabarmati River Basin' as a strip in the western part whereas 'Mahi River Basin' forms most part of the district eastwards.

Administrative Set-up:

S. No.	Block Name	Population Area (Based on 2001 census) (sq km		% of District Area	Total Number of Towns and Villages
1	Aspur	1,84,508	690.9	18.0	146
2	Bichhiwara	2,36,114	1,006.5	27.0	175
3	Dungarpur	2,15,493	609.5	16.0	160
4	Sagwara	2,23,808	633.2	17.0	159
5	Simalwara	2,47,720	830.5	22.0	221
	Total	11,07,643	3,770.6	100.0	861

Dungarpur district is administratively divided into five Blocks. The following table summarizes the basic statistics of the district at block level.

Dungarpur district has 861 towns and villages, of which five are block headquarters as well.


Climate:

The Climate of this district is largely dry. Summer from April to June when maximum temperature rises to 45°C and average temperature remains around 36 °C. Monsoon season is spread over months of July to Mid-September resulting into average annual rainfall of 756.4 mm with relatively lower average temperature of around 32 °C. Post Monsoon from Mid-September to October when temperature remains around 27 °C is very pleasant. Winters extend from November to February/March when minimum temperature falls to around 5 °C, while the average temperature during day time remains around 20°C.

DISTRICT – DUNGARPUR

Physiographically, the district is characterized by low-lying hills intervening with valleys and rocky plains and can be broadly divided in three distinct unit viz. Rocky uplands, Erosional valleys and pediplains. The area is drained by Mahi and its tributaries like Nori, Jakam, Gomti, Saren, Ghorel and Moran. The general topographic elevation in the district is between 200m to 250m above mean sea level in most of the blocks. Elevation ranges from a minimum of 112 m amsl in Simalwara block in the southwestern part of the district to a maximum of 545.6 m amsl In Bichhiwara in northwestern part of the district.

S. No.	Block Name	Min. Elevation (m amsl)	Max. Elevation (m amsl)
1	Aspur	131.3	380.7
2	Bichhiwara	185.3	545.6
3	Dungarpur	178.4	452.7
4	Sagwara	113.2	348.5
5	Simalwara	112.0	285.8

Table: Block wise minimum and maximum elevation

RAINFALL

The general distribution of total annual rainfall across the district can be visualized from isohyets presented in the Plate – III. Northeastern part of the district received rainfall in the range of 500 – 600 mm which gradually increases towards west. The annual average rainfall was 667.8 mm based on the data of available blocks in the district while highest average annual rainfall is 732.3 mm in Bichhiwara block. Lowest annual rainfall was in Sagwara block (544.8 mm). Bichhiwara block has received highest maximum annual rainfall of about 759.3 mm.

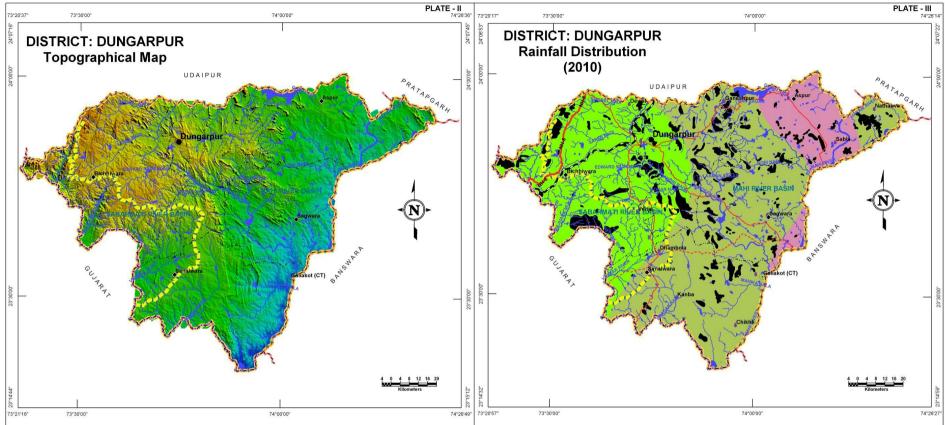
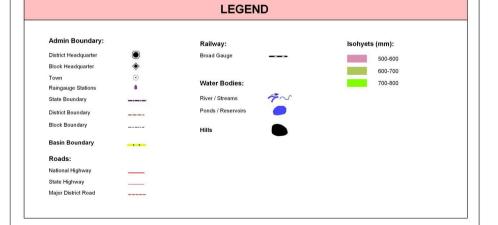

Block Name	Minimum Annual Rainfall (mm)	Maximum Annual Rainfall (mm)	Average Annual Rainfall (mm)		
Aspur	569.2	650.5	602.5		
Bichhiwara	697.7	759.3	732.3		
Dungarpur	628.2	758.7	695.4		
Sagwara	544.8	695.6	645.4		
Simalwara	590.8	711.8	663.6		

Table: Block wise annual rainfall statistics (derived from year 2010 meteorological station data)





LEGEND

Major part of the district is formed of Aravalli Super Group of rocks represented by schist, gneiss, granite, quartzite and slates. South and southwestern part of the district comes under Lunavada Group which consist phyllite, meta-siltstone, quartzite and dolomite rock formations. Udaipur Group covers maximum part of the district and consists of phyllite, mica schist, quartzite, dolomite and gneisses formation. The chief rock types of the area phyllite and quartzite striking NNW and SSE intruded by ultra basic intrusive.

Super Group	Group	Formation				
	Lunavada	Sand and younger alluvium, Phyllite, meta-silt stone, garnetiferous				
	Lullavaua	mica schist, quartzite & dolomite.				
	Rakhabdeo Ultramafic Suite	Serpentinite, talc-chlorite, actinolite-tremolite schist and asbestos.				
Aravalli	Jharol	Chloritic-micaceous schist and calc schists.				
		Phyllite, mica schists, meta siltstone, quartzite, Dolomite, gneisses				
	Udaipur	and migmatites.				
	Debari	Meta-arkose, quartzite, phyllite, dolomitic marble and dolomite.				
	XXX	XUnconformityXXXXX				
Bhilwara	Mangalwar Complex	Migmatites, quartzofeldspathic gneisses feldspathic garnetiferous-				
DIIIWdid	Mangalwar Complex	mica schist and amphibolites.				

GEOMORPHOLOGY

Table: Geomorphologic units, their description and distribution

Origin	Landform Unit	Description					
Denudational	Buried Pediment	Pediment covers essentially with relatively thicker alluvial, colluvial or weathered materials.					
Denudational	Pediplain	Coalescence and extensive occurrence of pediment.					
Fluvial	Valley Fill	Formed by fluvial activity, usually at lower topographic locations, comprising of boulders, cobbles, pebbles, gravels, sand, silt and clay. The unit has consolidated sediment deposits.					
Hills	Denudational, Structural Hill, Linear Ridge	Steep sided, relict hills undergone denudation, comprising of varying lithology with joints, fractures and lineaments. Linear to arcuate hills showing definite trend-lines with varying lithology associated with folding, faulting etc. Long narrow low-lying ridge usually barren, having high run off may form over varying lithology with controlled strike.					

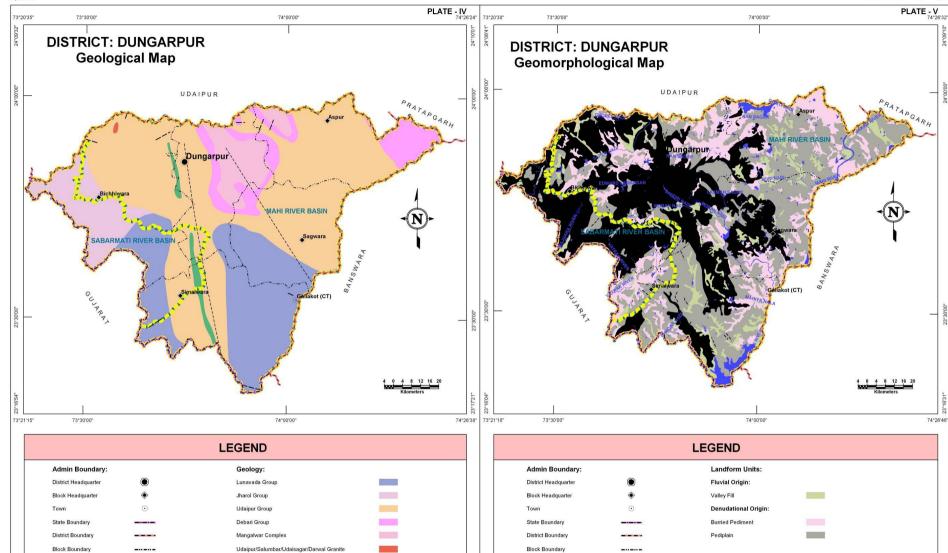
Basin Boundary

Fault

Lineament

Structural Features:

Source: District Resource Map of Rajasthan - GSI



Rakhabdev Ultramafic Suite

Basin Boundary

Water Bodies:

Hills:

River/Ponds/Reservoirs

Structural Features:

Fault/Fractures/Lineament

Structural/Denudational/Linear Ridge

Source: Ground Water Atlas of Rajasthan - SRSAC & GWD, Rajasthan

. .

Aquifers in this district are mostly formed in hardrock formations where weathering, fracturing and jointing leads to formation of secondary openings and thus aquifers. Phyllite is most prominent aquifers here which occupy about 73% of the central and western parts of the district. BGC also constitutes good aquifers in about 10% of the district in northeastern part. Ultrabasic rocks occupy small aquifer tract in southern part of the district and schist in the northeast form about 7% of the district aquifers.

Aquifer in	Area	% age of	Description of the unit/Occurrence
Potential Zone	(sq km)	district	Description of the unit/occurrence
Dhullita			These include meta sediments and represented by carbonaceous
Phyllite	2,741.5	72.7	phyllite.
Schist			Medium to fine grained compact rock. The lithounits are soft, friable
SCHIST	257.0	6.8	and have closely spaced cleavage.
Ultra Basic	101.2	2.7	This comprises serpentinite, hyperstinite and amphibolite.
BGC	390.9	10.4	Grey to dark coloured, medium to coarse grained rocks.
Hills	280.0	7.4	
Total	3,770.6	100.0	

Table: aguifer potential zones their area and their description

STAGE OF GROUND WATER DEVELOPMENT

Aspur block in the northeastern part of the district falls under 'Safe' category as assessed from stage of ground water development. Incidentally, these areas correspond to the aquifers formed in BGC and Schistose rocks. The other four blocks of the district fall into 'Semi Critical' category as development has reached very close to the limit and any further development would lead to exhaustion of dynamic ground water resources in these areas.

Categorization on the basis of stage of development of ground water	Block Name				
Safe	Aspur				
Semi Critical	Sagwara, Dungarpur, Simalwara, Bichhiwara				

Basis for categorization: Ground water development <= 70% - Safe; <= 70 - 90% Semi critical

LOCATION OF EXPLORATORY AND GROUND WATER MONITORING WELLS

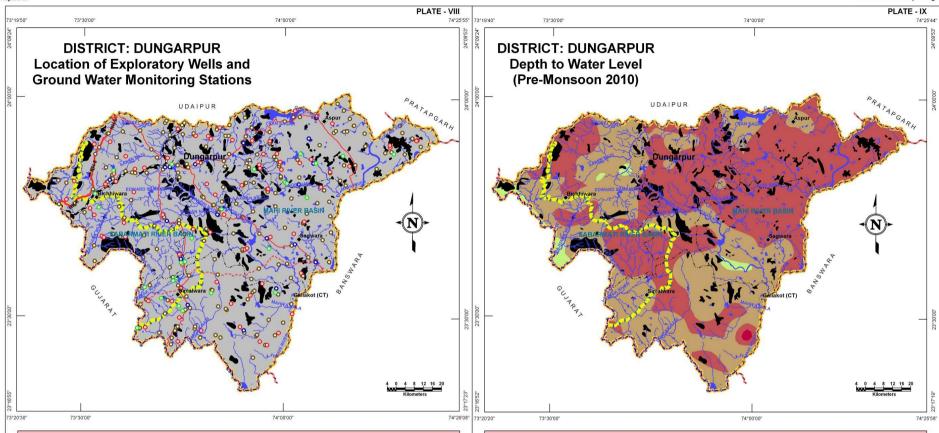
There is a well distributed network of exploratory wells (109) and ground water monitoring stations (251) in the district owned by RGWD (83 and 231 respectively) and CGWB (20 and 20 respectively) in Dungarpur district. The exploratory wells have formed the basis for delineation of subsurface aquifer distribution scenario in three dimensions. Benchmarking and optimization studies suggest that both ground water level and quality are being sufficiently monitored and no further strengthening is required.

Block Name	Explo	oratory V	Vells		ound Wa toring Sta		Recommended additional wells for optimization of monitoring network			
	CGWB	WB RGWD Total			CGWB RGWD Total CGWB RGWD Total		Water Level	Water Quality		
Aspur	4	15	19	4	45	49	-	-		
Bichhiwara	5	24	29	7	52	59	-	-		
Dungarpur	4	18	22	3	48	51	-	-		
Sagwara	4	10	14	3	39	42	-	-		
Simalwara	9	16	25	3	47	50	-	-		
Total	26	83	109	20	231	251	-	-		

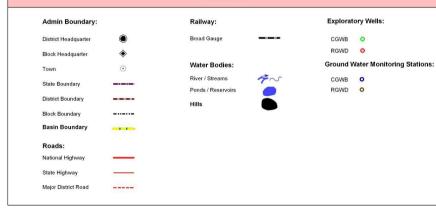
Table: Block wise count of wells (existing and recommended)

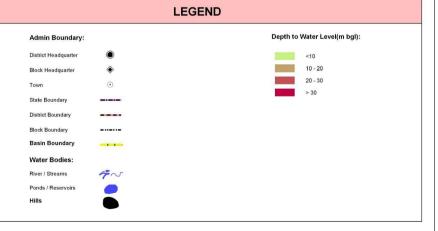
DEPTH TO WATER LEVEL (PRE MONSOON – 2010)

In spite of being a predominantly hard rock area, the district shows moderate variation in depth to ground water levels from less than 10m bgl to around 40m bgl. Shallow water levels are seen in isolated parts of the district within Bichhiwara and Sagwara blocks. Deeper water level of more than 30m bgl is found in southeastern fringe of Simalwara block. More than 80% of the district has depths of water level ranging between 10m bgl and 30m bgl is seen.


			-		-					
Depth to water		Block wise area coverage (sq km) *								
level (m bgl)	Aspur	Bichhiwara	Dungarpur	Sagwara	Simalwara	(sq km)				
<10	-	52.8	-	17.2	-	70.0				
10-20	104.8	493.2	117.8	226.5	587.5	1,529.8				
20-30	539.3	368.5	410.2	357.6	209.9	1,885.5				
>30	-	-	-	-	5.3	5.3				
Total	644.1	914.5	528.0	601.3	802.7	3,490.6				

* The area covered in the derived maps is less than the total district area since the hills have been excluded from interpolation/contouring.





LEGEND

WATER TABLE ELEVATION (PRE MONSOON - 2010)

Large variation in the water table elevation from about 120m amsl to more than 340m is seen in the district (Plate – X). General flow direction of ground water is from west to east and southeast within major part of the district. Maximum water table elevation of upto >340m amsl is noticed in the northwestern part (Bichhiwara Block) of the district. The water table gradually lowers towards southeast reaching a minimum elevation of about 120m amsl in the Sagwara and Simalwara blocks of the district.

Block Name	Block wise area coverage (sq km) per water table elevation (amsl) range												Total Area	
	< 120	120 - 140	140 - 160	160 - 180	180 - 200	200 - 220	220 - 240	240 - 260	260 - 280	280 - 300	300 - 320	320 - 340	> 340	(sq km)
Aspur	-	1.4	38.9	232.0	220.1	93.7	50.7	7.3	-	-	-	-	-	644.1
Bichhiwara	-	-	-	-	5.8	71.0	68.9	54.4	145.6	191.1	228.1	134.7	14.9	914.5
Dungarpur	-	-	-	0.3	8.4	33.8	94.5	220.0	136.7	33.6	0.7	-	-	528.0
Sagwara	-	200.1	119.5	109.4	92.8	57.6	21.4	0.5	-	-	-	-	-	601.3
Simalwara	20.8	134.2	80.9	93.2	244.5	196.1	31.2	1.8	-	-	-	-	-	802.7
Total	20.8	335.7	239.3	434.9	571.6	452.2	266.7	284	282.3	224.7	228.8	134.7	14.9	3,490.6

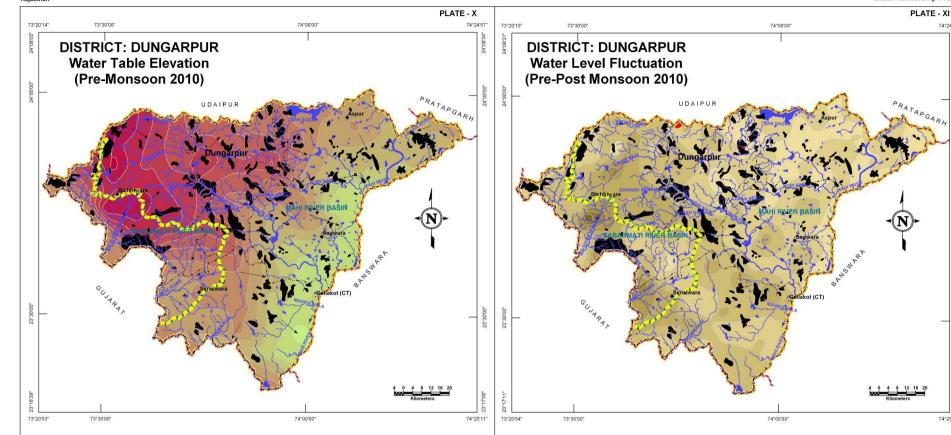
Table: Block wise area covered in each water table elevation range

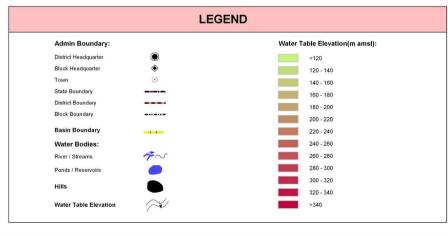
WATER LEVEL FLUCTUATION (PRE TO POST MONSOON 2010)

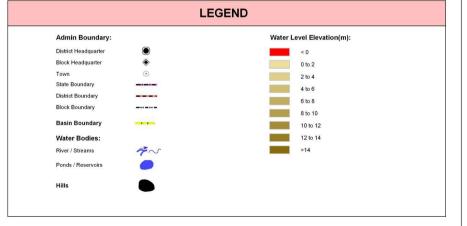
A 2m contour interval adopted to visualize the ground water level fluctuation reveals no change in one area to rise in other areas reaching upto more than 14m, as seen in Plate – XI. The district shows a general rise of upto 6m in most part of the area. Unusually high values of ground water rise (to more than 14m in water level of post monsoon season with respect to pre monsoon) however, very localized in distribution is seen in the western part of Bichhiwara block.

	Table: Block wise area covered in each water nuctuation zone										
Water level fluctuation		Block wise area coverage (sq km)									
range (m)	Aspur	Bichhiwara	Dungarpur	Sagwara	Simalwara	(sq km)					
<0	-	0.3	3.6	-	-	3.9					
Oto2	339.8	24.1	78.1	93.9	-	535.9					
2to4	302.7	166.6	229.0	332.4	244.7	1,275.4					
4to6	1.6	358.7	193.3	157.3	368.4	1,079.3					
6to8	-	260.1	24.0	15.6	145.1	444.8					
8to10	-	72.9	-	2.1	39.6	114.6					
10to12	-	21.0	-	-	4.9	25.9					
12to14	-	7.5	-	-	-	7.5					
>14	-	3.3	-	-	-	3.3					
Total	644.1	914.5	528.0	601.3	802.7	3,490.6					

Table: Block wise area covered in each water fluctuation zone






PLATE - XI

74°24'53"

74°25'07"

GROUND WATER ELECTRICAL CONDUCTIVITY DISTRIBUTION

The Electrical conductivity (at 25° C) distribution map is presented in Plate – XII. The areas with low EC values in ground water (<2000 µS/cm) are shown in yellow color and occupies almost 94% of the district area indicating that, by and large the ground water in the district is suitable for domestic purpose. The areas with moderately high EC values (2000 - 4000 µS/cm) are shown in green color and occupy 5% of the district area, largely southern part of Aspur. A negligibly small part of the district has shown high EC value and it appears to be a localized pocket.

Electrical Conductivity Ranges			В	lock wis	e area o	coverag	e (sq kn	n)			Total Area
(μS/cm at 25°C)	As	pur	Bichh	iwara	Dung	arpur	Sagv	vara	Sima	lwara	Total Area (sq km)
(Ave. of years 2005-09)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq km)
<2000	534.1	82.9	914.5	100.0	528.0	100.0	531.4	88.4	802.7	100.0	3,310.7
2000-4000	109.8	17.1	-	-	-	-	62.6	10.4	-	-	172.4
>4000	0.2	-	-	-	-	-	7.3	1.2	-	-	7.5
Total	644.1	100.0	914.5	100.0	528.0	100.0	601.3	100.0	802.7	100.0	3,490.6

Table: Block wise area of Electrical conductivity distribution

GROUND WATER CHLORIDE DISTRIBUTION

The yellow colored regions in Plate – XIII are such areas where chloride concentration is low (<250 mg/l) occupies approximately 87% of the district area. The ground water in this district is therefore, largely fresh and suitable for domestic purpose. The areas with moderately high chloride concentration (250-1000mg/l) are shown in green color occupy approximately 12% of the district area, largely northeastern part of the district around Aspur. A negligibly small area in the district has shown >1000 mg/l of chloride concentration in ground water but is very localized in distribution.

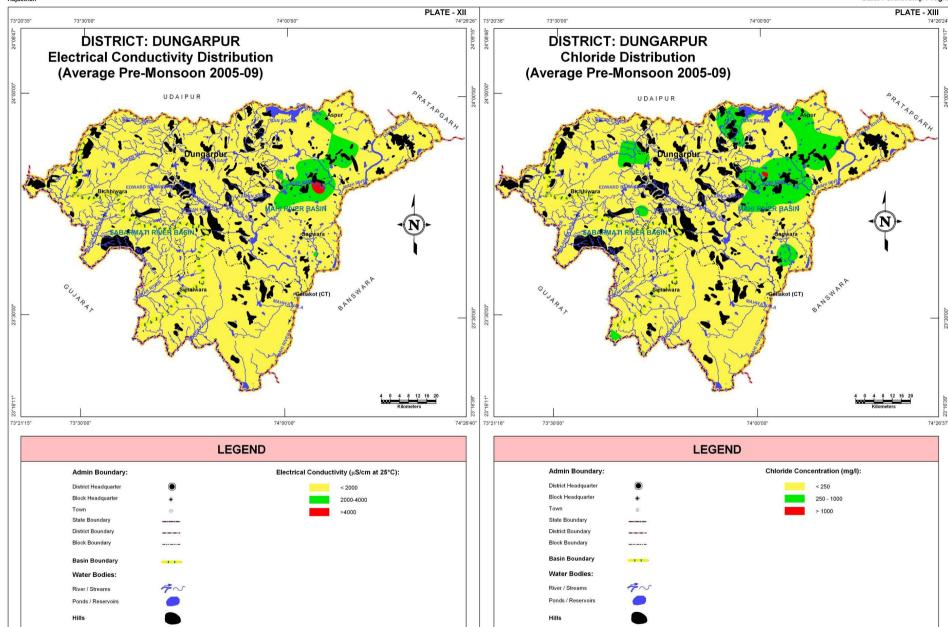

Chloride Concentration	Chloride Concentration						Block wise area coverage (sq km)							
Range (mg/l)	As	pur	Bichh	iwara	Dung	arpur	Sagv	vara	Sima	lwara	Total Area (sq km)			
(Ave. of years 2005-09)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq km)			
<250	418.7	65.0	873.9	96.0	504.6	96.0	483.0	80.0	792.0	99.0	3,072.2			
250-1000	223.8	35.0	40.6	4.0	23.4	4.0	118.3	20.0	10.7	1.0	416.8			
>1000	1.6	-	-	-	-	-	-	-	-	-	1.6			
Total	644.1	100.0	914.5	100.0	528.0	100.0	601.3	100.0	802.7	100.0	3,490.6			

Table: Block wise area of Chloride distribution

GROUND WATER FLUORIDE DISTRIBUTION

European Union State Partnership Programme

DISTRICT – DUNGARPUR

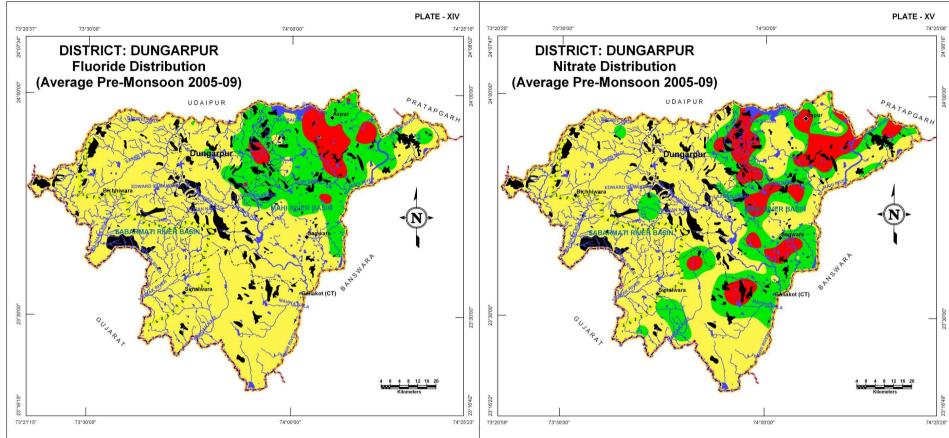
The Fluoride concentration map is presented in Plate – XIV. The areas with low concentration (i.e.,>1.5 mg/l) are shown in yellow color and occupies almost 75% of the district area which is suitable for domestic purpose. The areas with moderately high concentration (1.5-3.0 mg/l) are shown in green color, largely northeastern part of district. Remaining small part of the district approximately 5% of area of the district has high Fluoride concentration (>3.0 mg/l), largely southern part of Aspur and making it unsuitable for domestic purpose. On overlaying this map with aquifer distribution map it is interesting to find that these high fluoride areas are surrounded by gneissic (BGC) aquifer areas and within schistose rocks.

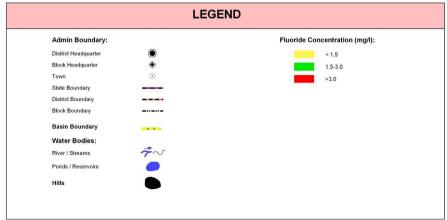
Fluoride Concentra	ation			В	ock wis	e area (coverag	e (sq kr	n)			Total Area
Range (mg/l)		As	pur	Bichh	iwara	Dung	arpur	Sag	wara	Sima	lwara	Total Area (sq km)
(Ave. of years 2005	5-09)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq km)
<1.5		131.3	20.4	914.5	100.0	387.6	73.4	382.0	63.5	802.7	100.0	2,618.1
1.5-3.0		374.1	58.1	-	-	121.5	23.0	212.3	35.3	-	-	707.9
>3.0		138.7	21.5	-	-	18.9	3.6	7.0	1.2	-	-	164.6
Total		644.1	100.0	914.5	100.0	528.0	100.0	601.3	100.0	802.7	100.0	3,490.6

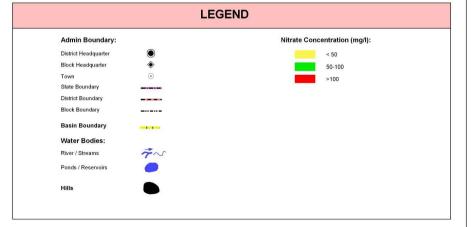
Table: Block wise area of Fluoride distribution

GROUND WATER NITRATE DISTRIBUTION

High nitrate concentration in ground water renders it unsuitable for agriculture purposes. Plate – XV shows distribution of Nitrate in ground water. Low nitrate concentration (<50 mg/l) is shown in yellow color occupies most of the western part of the district and partly in the eastern part of the district accounting for approximately 66% of the district area suitable for agriculture purpose. The areas with moderately high nitrate concentration (50-100 mg/l) and the high concentration nitrate (>100 mg/l) are shown respectively in green and red colours. Such patches occupy significant areas in the eastern part of the district accounting for about 34% of the district area that is marginally or not suitable for agriculture.


Nitrate Concentration		Block wise area coverage (sq km)								Total Area	
Range (mg/l)	Aspur		Bichh	ichhiwara Dungarpur		arpur	Sagwara		Simalwara		
(Ave. of years 2005-09)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq km)
<50	231.3	35.9	872.2	95.4	421.4	79.8	240.5	40.0	546.1	68.0	2,311.5
50-100	207.4	32.2	42.3	4.6	64.2	12.2	255.2	42.5	214.4	26.7	783.5
>100	205.4	31.9	-	-	42.4	8.0	105.6	17.6	42.2	5.3	395.6
Total	644.1	100.0	914.5	100.0	528.0	100.0	601.3	100.1	802.7	100.0	3,490.6


Table: Block wise area of Nitrate distribution



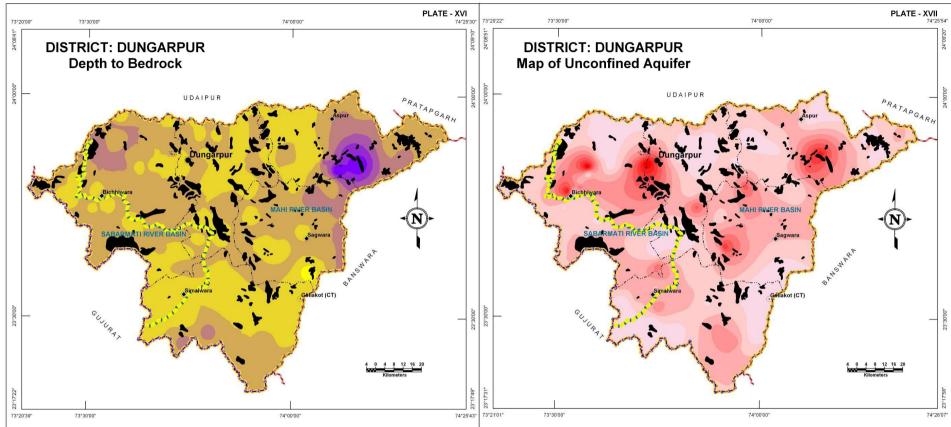
DEPTH TO BEDROCK

From hydrogeological perspective, the beginning of massive bedrock has been considered for defining top of bedrock surface. The major rocks types present in the district are phyllite, schist, ultrabasic and BGC. These rocks are overlain by soil cover of variable thickness. Depth to bedrock map of Dungarpur district (Plate – XVI) reveals wide variation of more than 100m below ground level reaching a maximum depth of more than 120m in the southern part of Aspur block. Areas around Aspur, Bichhiwara, Dungarpur, Sagwara and Simalwara blocks indicate the occurrence of bedrock at moderate depths of the order of 40m bgl and often reaching depth of upto 80m bgl. Most of the district represents a moderate bedrock depth reaching a maximum of 60m bgl and very deep bedrock is encountered in Aspur block, in the eastern part of the district where a depth of >120m bgl is seen.

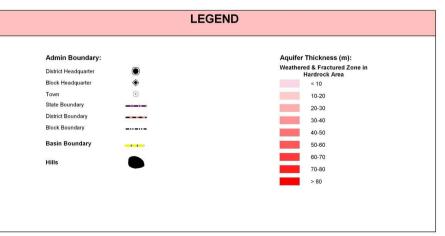
Danth ta hadrook			B	lock wis	se area	coverage	e (sq km	ı)			Total Area
Depth to bedrock (m bgl)	As	pur	Bichh	iwara	Dung	arpur	Sag	wara	Sima	lwara	
(in bgi)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq km)
<20	-	-	-	-	-	-	9.7	1.6	0.3	-	10.0
20-40	182.6	28.0	214.9	23.0	248.3	47.0	136.4	22.7	490.6	61.0	1,272.8
40-60	216.0	34.0	624.2	69.0	279.7	53.0	356.3	59.3	291.5	36.0	1,767.7
60-80	128.2	20.0	75.4	8.0	-	-	90.2	15.0	20.3	3.0	314.1
80-100	53.7	8.0	-	-	-	-	8.1	1.3	-	-	61.8
100-120	40.9	6.0	-	-	-	-	0.6	0.1	-	-	41.5
>120	22.7	4.0	-	-	-	-	-	-	-	-	22.7
Total	644.1	100.0	914.5	100.0	528.0	100.0	601.3	100.0	802.7	100.0	3,490.6

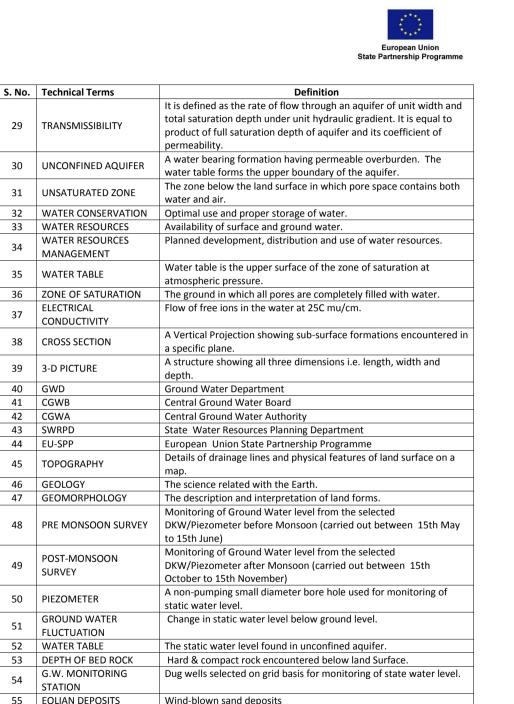
UNCONFINED AQUIFER

Hard rock areas


Aquifers in the district are predominantly formed in weathered, fractured and jointed rock formations occurring at shallower depths and these constitute good unconfined aquifers. The thickness of aquifers thus formed varies from less than 10m to about 90m however; major part of the district shows a thickness range of upto 30m. The southwestern and central part has shown occasional high thickness zones in Bichhiwara and Dungarpur blocks and partly in Aspur block.

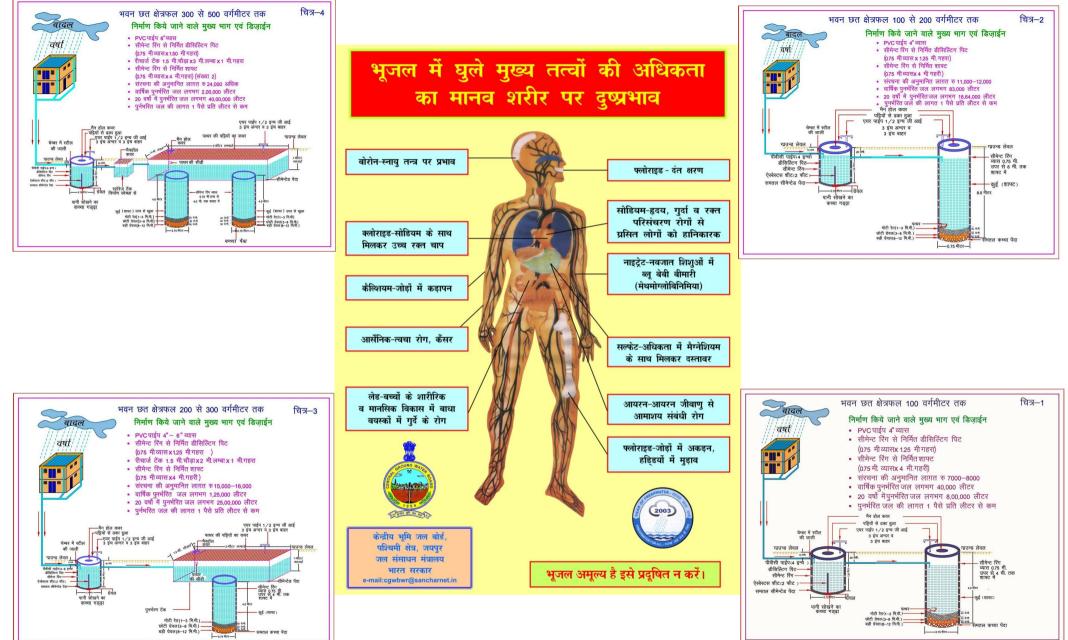

Unconfined aquifer		Block wis	e area covera	age (sq km)		Total Area
Thickness (m)	Aspur	Bichhiwara	Dungarpur	Sagwara	Simalwara	(sq km)
< 10	115.8	123.5	138.7	53.8	229.9	661.7
10-20	273.5	321.6	222.9	141.7	262.5	1,222.2
20-30	126.4	233.9	87.9	290.5	260.9	999.6
30-40	60.2	132.8	36.8	84.7	49.3	363.8
40-50	35.6	60.5	18.7	22.1	0.1	137.0
50-60	21.7	23.6	9.7	7.3	-	62.3
60-70	9.3	11.6	6.4	1.2	-	28.5
70-80	1.6	5.1	4.7	-	-	11.4
> 80	-	1.9	2.2	-	-	4.1
Total	644.1	914.5	528.0	601.3	802.7	3,490.6

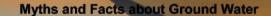




Glossary of terms

S. No.	Technical Terms	Definition
1	AQUIFER	A saturated geological formation which has good permeability to
	-	supply sufficient quantity of water to a Tube well, well or spring.
2	ARID CLIMATE	Climate characterized by high evaporation and low precipitation.
3	ARTIFICIAL RECHARGE	Addition of water to a ground water reservoir by manmade activity
4	CLIMATE	The sum total of all atmospheric or meteorological influences principally temperature, moisture, wind, pressure and evaporation of a region.
5	CONFINED AQUIFER	A water bearing strata having confined impermeable overburden. In this aquifer, water level represents the piezometric head.
6	CONTAMINATION	Introduction of undesirable substance, normally not found in water, which renders the water unfit for its intended use.
7	DRAWDOWN	The drawdown is the depth by which water level is lowered.
8	FRESH WATER	Water suitable for drinking purpose.
9	GROUND WATER	Water found below the land surface.
10	GROUND WATER BASIN	A hydro-geologic unit containing one large aquifer or several connected and interrelated aquifers.
11	GROUND WATER RECHARGE	The natural infiltration of surface water into the ground.
12	HARD WATER	The water which does not produce sufficient foam with soap.
13	HYDRAULIC CONDUCTIVITY	A constant that serves as a measure of permeability of porous medium.
14	HYDROGEOLOGY	The science related with the ground water.
15	HUMID CLIMATE	The area having high moisture content.
16	ISOHYET	A line of equal amount of rainfall.
17	METEOROLOGY	Science of the atmosphere.
18	PERCOLATION	It is flow through a porous substance.
19	PERMEABILITY	The property or capacity of a soil or rock for transmitting water.
20	рН	Value of hydrogen-ion concentration in water. Used as an indicator of acidity (pH < 7) or alkalinity (pH > 7).
21	PIEZOMETRIC HEAD	Elevation to which water will rise in a piezometers.
22	RECHARGE	It is a natural or artificial process by which water is added from outside to the aquifer.
23	SAFE YIELD	Amount of water which can be extracted from ground water withou producing undesirable effect.
24	SALINITY	Concentration of dissolved salts.
25	SEMI-ARID	An area is considered semiarid having annual rainfall between 10-20 inches.
26	SEMI-CONFINED AQUIFER	Aquifer overlain and/or underlain by a relatively thin semi-pervious layer.
27	SPECIFIC YIELD	Quantity of water which is released by a formation after it's complete saturation.
28	TOTAL DISSOLVED SOLIDS	Total weight of dissolved mineral constituents in water per unit volume (or weight) of water in the sample.


(Contd...)



Raiasthan

A A A KAR KAR AN AN

S No	Myths	Facts
1	What is Ground Water an underground lake a net work of underground rivers a bowl filled with water 	Water which occurs below the land in geological formations/rocks is Ground water
2	Ground Water occurs everywhere beneath the Land Surface	Not really, it depends on the nature of rock formation
3	There is a relationship between ground water and surface water	Not all the places. Near streams/rivers there is relation
4	Groundwater is not renewable resource	It is renewable source and every year it is being recharged through rain/applied irrigation etc
5	Ground water is unlimited and deeper you drill more discharge	It is limited to annual recharge from rain/applied irrigation. The discharge may not increase if you go deeper
6	Ground Water moves rapidly	The movement of ground water is very slow
7	Ground water pumped from wells is thousands of years old	Generally the ground water being tapped through wells is a few years old
8	If water taste good—it is safe to drink	It may have other chemicals e.g. fluoride, nitrates etc which are harmful
9	Water from free flowing tube wells is very pure	This water can also be contaminated so test before use
10	If I recharge my TW/DW/HP it will not benefit me	It will also benefit you and also adjoing wells
11	There is no static ground water resources in Rajasthan	Rajasthan is also having Static GW resources, and being tapped in most of areas as GW annual withdrawal is more than annual recharge
12	I cannot meet annual cooking and drinking water requirement by rain water harvesting	The water requirement for drinking and cooking is only 8 lit/day. You can harvest this water for family of 5 persons from roof top or paved area of 75 Sq m to meet annual requirement
13	You can increase ground water recharge	This can be done by harvesting the rain water and storing in sub surface reservoir (GW) by constructing the recharge structures
14	You cannot use abandoned TW/HP/DW for ground water recharge	These should be used as recharge structures as harvested rain water is directly put into GW reservoir
15	Putting waste near HP/TW will not cause any problem	Such actions will pollute wells and water

11

-

Rolta India Limited

Central & Registered Office Rolta Tower A, Rolta Technology Park, MIDC, Andheri (East), Mumbai - 400 093 Tel : +91 (22) 2926 6666, 3087 6543 Fax : +91 (22) 2836 5992 Email : indsales@rolta.com

www.rolta.com

.