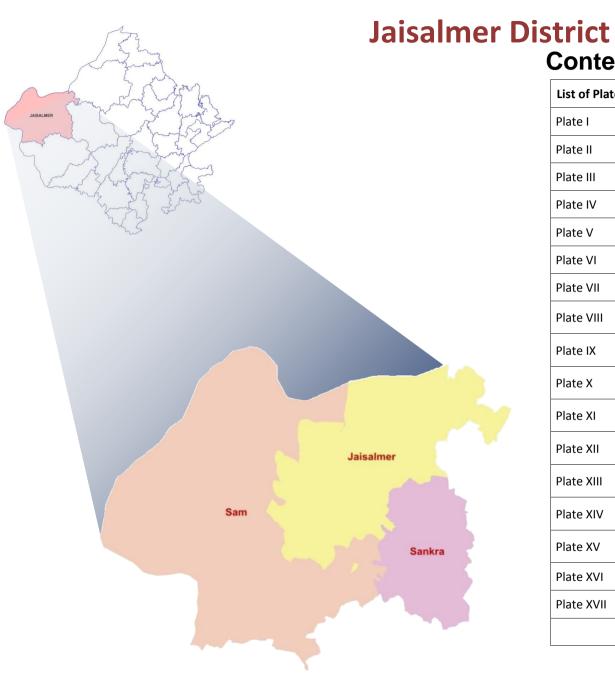


Hydrogeological Atlas of Rajasthan Jaisalmer District


Jaisalmer

2013

Hydrogeological Atlas of Rajasthan

Contents:

List of Plates	Title	Page No.				
Plate I	Administrative Map	2				
Plate II	Topography	4				
Plate III	Rainfall Distribution	4				
Plate IV	Geological Map	6				
Plate V	Geomorphological Map	6				
Plate VI	Aquifer Map	8				
Plate VII	Stage of Ground Water Development (Block wise) 2011	8				
Plate VIII	Location of Exploratory and Ground Water Monitoring Stations	10				
Plate IX	Plate IX Depth to Water Level (Pre-Monsoon 2010)					
Plate X	Water Table Elevation (Pre-Monsoon 2010)	12				
Plate XI	Water Level Fluctuation (Pre-Post Monsoon 2010)	12				
Plate XII	Electrical Conductivity Distribution (Average Pre-Monsoon 2005-09)	14				
Plate XIII	Chloride Distribution (Average Pre-Monsoon 2005-09)	14				
Plate XIV	Fluoride Distribution (Average Pre-Monsoon 2005-09)	16				
Plate XV	Nitrate Distribution (Average Pre-Monsoon 2005-09)	16				
Plate XVI	Depth to Bedrock	18				
Plate XVII	Map of Unconfined Aquifer	18				
	Glossary of terms	19				

Location:

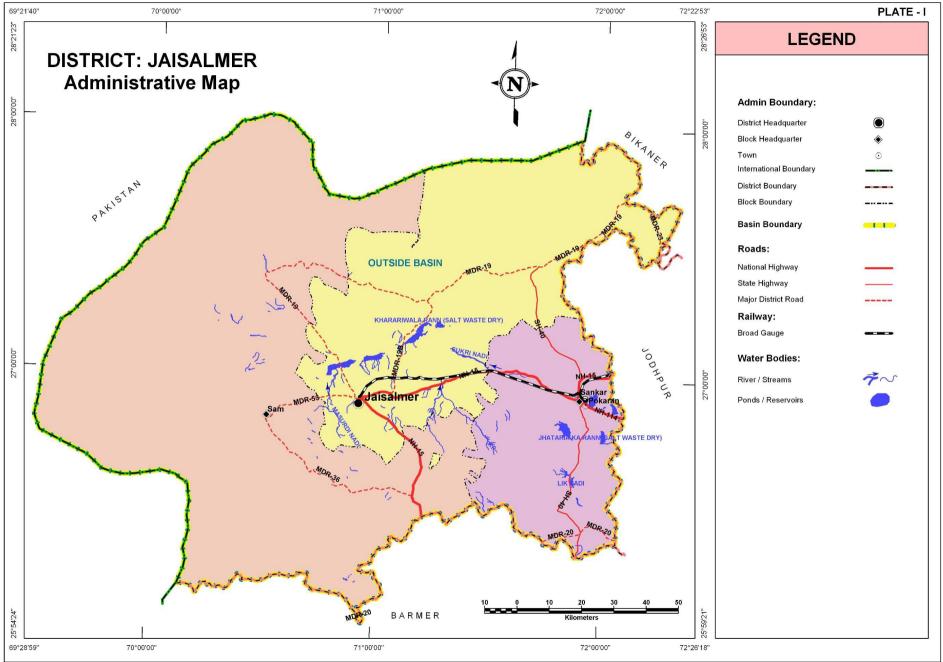
Jaisalmer district is located in the western part of Rajasthan. It is bounded in the north and west by Pakistan, in the east by Jodhpur district and in south by Barmer district. It stretches between 25° 58' 12.47" to 28° 04' 45.94" north latitude and 69° 25' 31.11" to 72° 22' 35.22" east longitude covering an approximate area of 38,487.2 sq kms. Major part of the district does not have a systematic drainage system, so whole district is part of an 'Outside' Basin.

Administrative Set-up:

Jaisalmer district is administratively divided into three blocks. The following table summarizes the basic statistics of the district at block level.

S. No.	Block Name	Population	Area	% of District	Total Number of
5. NO.	DIOCK Maille	(Based on 2001 census)	(sq km)	Area	Towns and Villages
1	Jaisalmer	1,88,659	11,657.2	30.3	156
2	Sam	1,38,297	21,453.8	55.7	303
3	Sankra	1,81,291	5,376.2	14.0	180
	Total	5,08,247	38,487.2	100.0	639

Jaisalmer district has 639 towns and villages, of which three are block headquarters as well.


Climate:

Jaisalmer is the most arid district of mainland India and almost entirely a sandy waste, forming a part of the Great Indian Thar desert. The general aspect of the area is that of an interminable sea of sand hills, of all shapes and sizes. The maximum summer temperature is around 41.6 °C while the minimum is 25 °C. The maximum winter temperature is usually around 23.6 °C and the minimum is 7.9 °C. The average rainfall is 176.0 mm. Highest ever recorded temperature being –5.9 °C. Rainfall is negligible and the number of rainy days is very few during the months of July to September.

Jaisalmer district is a part of the Great Indian Thar Desert, is sandy and dry. Topographically the area is undulating with sand dunes. In general the area is a sandy plain with few rocky patches and mostly sand dunes. The ridges usually are parallel to the direction of the wind. Jaisalmer falls within 'Outside Basin'. There is no prominent drainage system, except a few streams which are purely ephemeral and are inland drainage. Masurdi River is the notable streams of the district. General elevation in sandy plain area is 100 m above mean sea level to 150 m amsl and in Center, South and Southeast direction it is 250m amsl to 300m amsl. Elevation ranges minimum of 36.7m amsl in Sam block in the western part of the district and maximum of 346.9m amsl is also within eastern part of Sam block itself.

S. No.	Block Name	Minimum Elevation (m amsl)	Maximum Elevation (m amsl)
1	Jaisalmer	94.7	332.0
2	Sam	36.7	346.9
3	Sankra	183.5	334.1

Table: Block wise minimum and maximum elevation

RAINFALL

The rainfall of the district is very scanty and erratic. The general distribution of rainfall across can be visualized from isohyets presented in the Plate – III where west parts of the district received rainfall in the range of 200 – 300 mm gradually increasing towards east per year 2010 rainfall data. The average annual rainfall was 364.8 mm based on the data of available blocks while highest average annual rainfall was 474.2 mm in Sankra block. Lowest annual rainfall was in Sam block (212.8 mm). Sankra block has received highest maximum annual rainfall of about 539.2 mm.

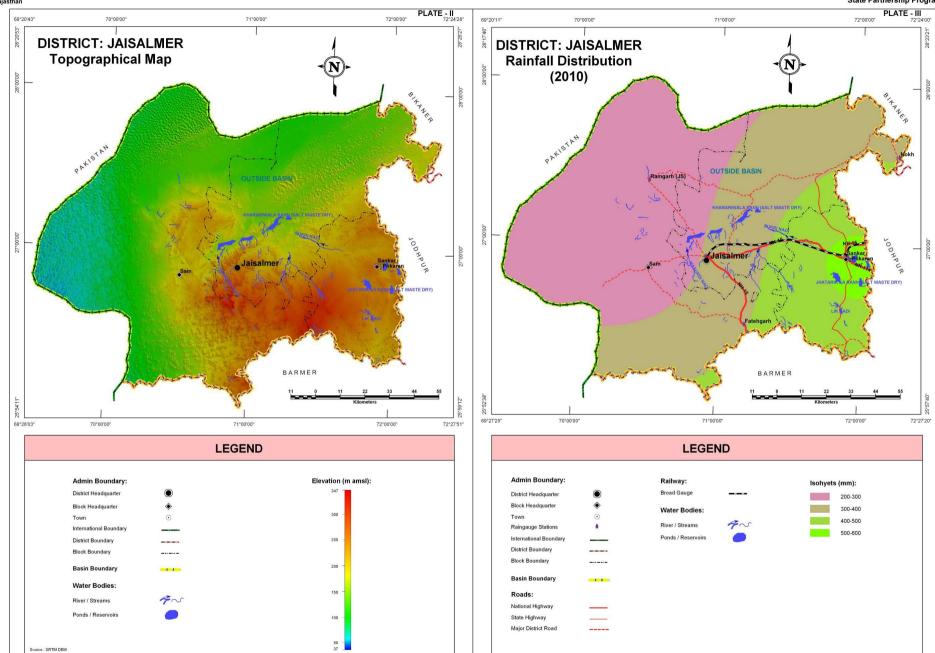

Block Name	Minimum Annual Rainfall (mm)	Maximum Annual Rainfall (mm)	Average Annual Rainfall (mm)
Jaisalmer	250.1	452.7	345.1
Sam	212.8	438.4	275.1
Sankra	412.2	539.2	474.2

Table: Block wise annual rainfall statistics (derived from year 2010 meteorological station data)

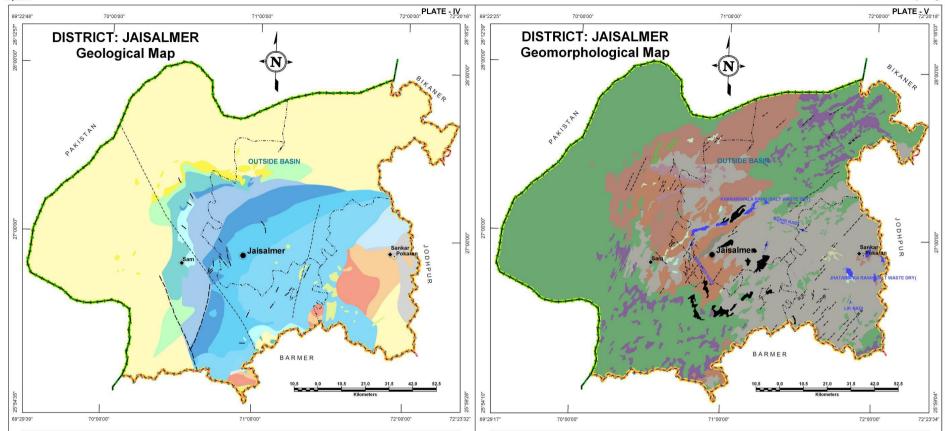
GEOLOGY & GEOMORPHOLOGY

Geology:

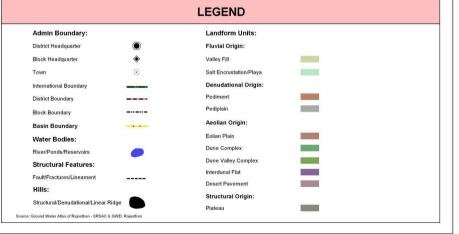
Geologically, the major part of the district is covered by Alluvium and wind-blown sand. It is one of the largest districts of India. The basement rocks are the metamorphites granites and rhyolites; they are unconformably overlain by dolomitic limestone, shale and sandstone of the MarwarSuper Group. Resting over these with unconformity are the Jurassic rocks made up of the Lathi, Jaisalmer, Baisakhi and Bhadesar formation. These are followed by rocks of Parewar and Abur formation. Sumer formation consists of unconsolidated highly current bedded reddish, gluconitic sandstone and silty sandstone. Khuiala formation consists of limestone boulder bedded fossiliferous limestone and shales.

Age/Super Group	Group/Series	Formation			
Recent to Sub-Recent	Alluvium and				
Recent to Sub-Recent	Sand dunes	Blown sand, silt, gravel			
XX	XUnconformi	tyXXX			
	Sumar Series	Sandstone			
Paleocene to Eocene	Bandha Series	Limestone, bentonitic clay, Fuller's			
	Khuiala Series	earth and lignite seams			
XX	XUnconformi	tyXXX			
Cretaceous	Abur Series	Sandstone, limestone, clay and			
	Parewar Series	lignite			
XX	XUnconformi	tyXXX			
Mesozoic	Bhadesar Series	Ferruginous sandstone			
	Baisakhi	Calegraque candetana			
	formation	Calcareous sandstone			
	Jaisalmer	Fossiliferous limestone, sandstone,			
	formation	etc.			
	Lathi formation	Sandstone, shale, etc.			
XX	XUnconformi	tyXXX			
		Birmania formation			
XX	XUnconformi	tyXXX			
		Randha formation			
XX	XUnconformi	tyXXX			
Marwar		Malanivolcanics and Jalore granite			

Geomorphology:


Table: Geomorphologic units, their description and distribution

Origin	Landform Unit	Description
	Desert	Flat barren stony desert plain having coarse, angular, wind
	Pavement	polished gravel and small stones lying on rock cut surface.
	Dune Complex	An undulating plain composed of number of sand dunes of crescent shape.
Aeolian	Dune Valley Complex	Cluster of dunes and interdunal spaces with undulating topography formed due to wind-blown activity, comprising of unconsolidated sand and silt.
	Eolian Plain	Formed by aeolian activity, with sand dunes of varying height, size, and slope. Long stretches of sand sheet. Gently sloping flat to undulating plain, comprised of fine to medium grained sand and silt. Also scattered xerophytic vegetation.
	Interdunal Flat	Flat, narrow land between dunes.
Denudat- ional	Pediment	Broad gently sloping rock flooring, erosional surface of low relief between hill and plain, comprised of varied lithology, criss-crossed by fractures and faults.
	Pediplain	Coalescence and extensive occurrence of pediment.
Fluvial	Valley Fill	Formed by fluvial activity, usually at lower topographic locations, comprising of boulders, cobbles, pebbles, gravels, sand, silt and clay. The unit has consolidated sediment deposits.
	Salt Encrustation/ Playa	Topographical depression comprising of clay, silt, sand and soluble salts, usually undrained and devoid of vegetation.
Structural	Plateau	Formed over varying lithology with extensive, flat, landscapes, bordered by escarpment on all sides. Essentially formed horizontally layered rocky marked by extensive flat top and steep slopes. It may be criss crossed by lineament.
Hills	Denudational, Structural Hill, Linear Ridge	Steep sided, relict hills undergone denudation, comprising of varying lithology with joints, fractures and lineaments. Linear to arcuate hills showing definite trend-lines with varying lithology associated with folding, faulting etc. Long narrow low-lying ridge usually barren, having high run off may form over varying lithology with controlled strike.



LEGEND

Admin Boundary:		Geology:		
District Headquarter		Alluvium and Wind blown sand	Lathi Formation	
Block Headquarter	۲	Shumar Formation	Bilara Group	
Town	\odot	Phalsund Formation	Jodhpur Group	
International Boundary		Bandah Formation	Birmania Formation	
District Boundary		Khuiala Formation	Randa Formation	
Block Boundary		Mandai Formation	Malani Plutonic	
Basin Boundary		Sanu Formation	Volcanic Suite	
Structural Features:		Abur Formation	Erinpura Granite & Gneiss	
Fault		Fatehgarh Formation		
Lineament		Pariwar (Parihar) Formation		
		Badesar Formation		
		Baisakhi Formation		
		Jaisalmer Formation		

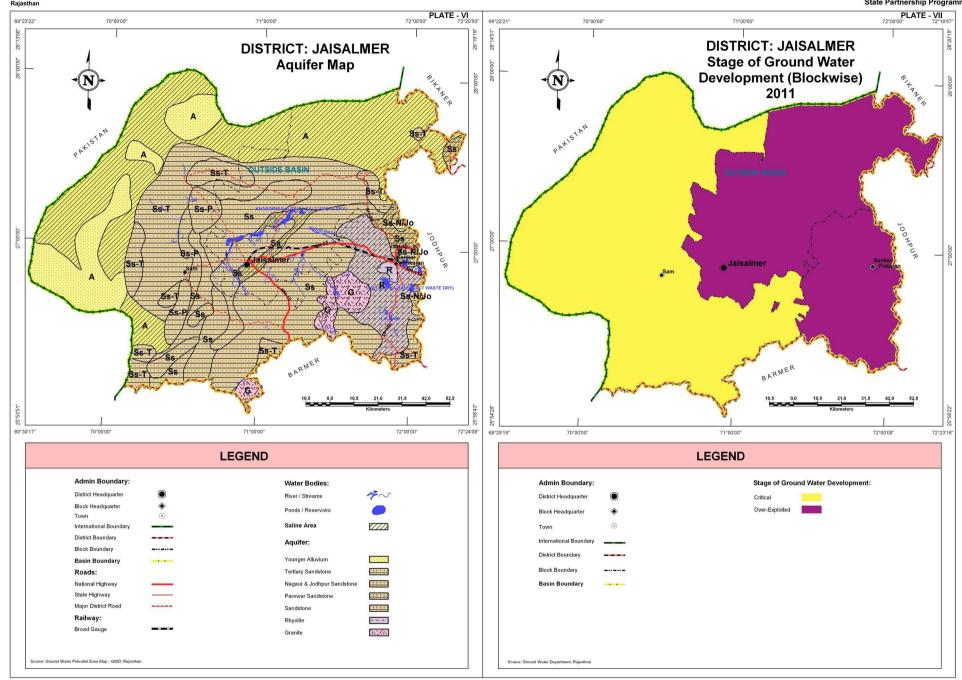
Aquifers area formed in the district mainly within Alluvium and Sandstone, and partly in Rhyolite and Granite. Of all aquifer forming materials Younger alluvium is most prominent occupying about 37% of the district area forming northern and western fringes. This is followed by different sandstones accounting for about 54% area spread over most of central, southern and eastern parts of the district. Rhylites for about 7% of aquifers in the district in the eastern part and small aquifers in the east and south are formed by granites.

Aquifer in Potential Zone	Area (sq km)	% age of district	Description of the unit/Occurrence
Younger Alluvium	14,169.6	36.8	It is largely constituted of Aeolian and Fluvial sand, silt, clay, gravel and pebbles in varying proportions.
Tertiary Sandstone	7,410.5	19.3	Medium to coarse grained, consolidated to semi consolidated sandstone.
Nagaur& Jodhpur	367.5	1.0	Buff to reddish brown in colour, fine to medium grained hard and compact
Sandstone		2.0	sandstone.
Parewar Sandstone	1,285.4	3.3	It is feldspathic ferruginous sandstone.
Sandstone	11,618.9	30.2	Fine to medium grained, red colour and compact and at places.
Rhyolite	2,582.9	6.7	Rhyolite is porphyritic and has phenocryst of quartz and feldspar.
Granite	1.052.4	2.7	Light grey to pink colour, medium to coarse grained, and characteristically have
Granite	1,052.4	2.7	porphyritic texture.
Total	38,487.2	100.0	

Table: aquifer potential zones their area and their description

STAGE OF GROUND WATER DEVELOPMENT

Ground water resource assessment studies carried out in the district have helped in categorizing the different blocks based on the stage of development. In Jaisalmer district of the three blocks, the Sam block falls into 'Critical' category indicating that the development of ground water is close to 100% whereas the other two blocks are already under 'Over Exploited' category suggesting that no further development should be done to prevent depletion of this resource.


Categorization on the basis of stage of development of ground water	Block Name
Critical	Sam
Over Exploited	Sankra, Jaisalmer

Basis for categorization: Ground water development <=100% - Critical and >100% - Over-Exploited.

LOCATION OF EXPLORATORY AND GROUND WATER MONITORING WELLS

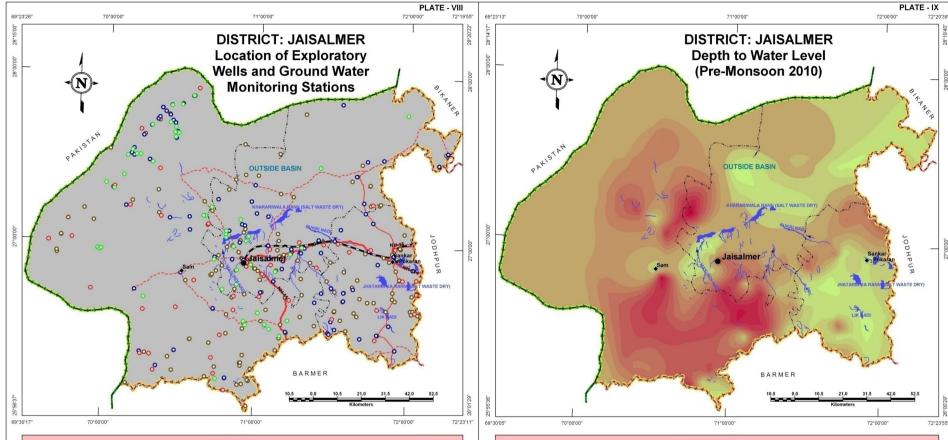
There is a well distributed network of exploratory wells (99) and ground water monitoring stations (319) in the district owned by RGWD (49and 223 respectively) and CGWB (50 and 96 respectively) in Jaisalmer district. The exploratory wells have formed the basis for delineation of subsurface aquifer distribution scenario in three dimensions. Benchmarking and optimization studies suggest that both ground water level and quality monitoring networks need to be strengthened by 297 and 13 additional wells respectively.

Block Name	Explo	oratory W	/ells		und Wat oring Sta			additional wells for nonitoring network					
	CGWB	RGWD	Total	CGWB	RGWD	Total	Water Level	Water Quality					
Jaisalmer	16	14	30	34	75	109	96	7					
Sam	34	24	58	41	85	126	168	4					
Sankra	-	11	11	21	63	84	33	2					
Total	50	49	99	96 223 319			297	13					

Table: Block wise count of wells (existing and recommended)

DEPTH TO WATER LEVEL (PRE MONSOON – 2010)

Depth to water level shows large variation, ranging from less than 10m below ground level to more than 130m bgl. Most of the hardrock area (granite and rhyolite) parts falling within Sankra block the ground water occur at shallow depth ranging from less than 10m bgl to around 90m bgl. There are also shallow water zones in northeastern and central parts of Jaisalmer block and in isolated patches in Sam block where the depth to water level is less (<10m bgl to about 70m bgl). In the sandstone aquifer, ground water generally occurs at deeper levels i.e., beyond 70m bgl and reaching even upto 130m bgl in major part of Sam block in southern part and central part of Jaisalmer block.


Block Name				Blo	ck wise are	ea covera	ge (sq km)	with dep	th to wate	er level rang	e (m gbl) *				Total Area
BIOCK Maine	< 10	10 – 20	20 – 30	30 – 40	40 – 50	50 - 60	60 - 70	70 – 80	80 – 90	90 - 100	100 - 110	110 – 120	120 - 130	> 130	(sq km)
Jaisalmer	234.8	2,215.2	3,137.3	89.1	4,154.3	544.2	434.5	343.1	185.9	150.7	88.4	48.0	25.9	5.8	11,657.2
Sam	6.7	135.5	239.4	257.8	9,018.1	3,292.8	2,525.3	1,691.4	2,043.9	1,304.2	599.4	303.9	35.4	-	21,453.8
Sankra	235.1	1,738.4	1,252.1	474.6	654.0	549.7	375.3	94.4	2.6	-	-	-	-	-	5,376.2
Total	476.6	4,089.1	4,628.8	821.5	13,826.4	4,386.7	3,335.1	2,128.9	2,232.4	1,454.9	687.8	351.9	61.3	5.8	38,487.2


* The area covered in the derived maps is less than the total district area since the hills have been excluded from interpolation/contouring.



WATER TABLE ELEVATION (PRE MONSOON - 2010)

The district falls within The Great Indian Thar Desert. The water table elevation range is very high. The regional flow direction thus is from east/southeast to westwards. Water table elevation highest reaching up to >280m amsl in Southeast part (Pokaran Block) of the district whereas minimum elevation (<20m amsl) in the Sam block. The flow gradient is quite steep in the high elevation areas and gradually flattens towards west.

											-					
Block Name		Block wise area coverage (sq km) per Water table elevation range (m amsl)														Total Area
BIOCK Marrie	< 20	20 - 40	40 - 60	60 - 80	80 - 100	100 - 120	120 - 140	140 - 160	160 - 180	180 - 200	200 - 220	220 - 240	240 - 260	260 - 280	> 280	(sq km)
Jaisalmer	-	-	-	-	2,014.5	2,166.6	2,571.9	2,977.9	1,298.2	480.5	141.5	6.1	-	-	-	11,657.2
Sam	52.2	4,232.9	5,251.4	3,859.5	2,229.0	1,049.0	1,004.6	1,611.5	1,095.2	282.7	180.2	299.5	181.0	92.4	32.7	21,453.8
Sankra	-	-	-	-	-	-	-	375.1	607.6	630.1	839.7	1,582.6	608.6	451.9	280.6	5,376.2
Total	52.2	4,232.9	5,251.4	3,859.5	4,243.5	3,215.6	3,576.5	4,964.5	3,001.0	1,393.3	1,161.4	1,888.2	789.6	544.3	313.3	38,487.2

Table: Block wise area covered in each water table elevation range

WATER LEVEL FLUCTUATION (PRE TO POST MONSOON 2010)

A 2m contour interval adopted to visualize the ground water level fluctuation reveals a fall of 4 m in to rise of more than 12m in the district, as seen in Plate – XI. The –ve fluctuation areas (indicated by pink and red regions) are the areas where overexploitation is taking place and even after monsoon recharge water level has not risen and has actually gone down with respect to pre-monsoon levels. Such large ground water depletion areas are located in northern, central and southern part of the district. Remaining part of the district has shown a general to significant rise in ground water level in the post monsoon season with respect to pre-monsoon. Maximum rise of more than 12m is noticed in the central part of the Sam block.

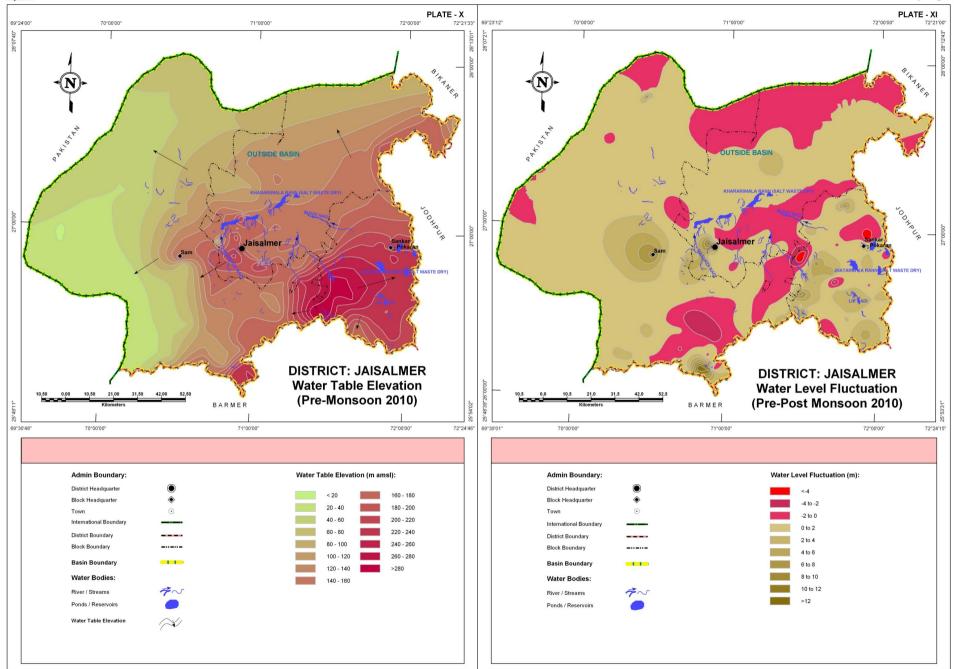

Water level fluctuation	Block wise a	rea coverag	re (sa km)	Total Area
range (m)	Jaisalmer	Sam	Sankra	(sq km)
< -4	-	-	64.3	64.3
-4 -2	20.5	327.2	77.1	424.8
-2 - 0	4,638.40	3,864.70	787.3	9,290.4
0 – 2	6,402.9	15,057.8	2,872.9	24,333.6
2 – 4	411.4	1,471.0	1,256.3	3,138.7
4 – 6	127.9	470.2	269.6	867.7
6 – 8	31.4	169.7	42.4	243.5
8-10	16.3	43.9	6.3	66.5
10 - 12	7	32.5	-	39.5
> 12	1.4	16.8	-	18.2
Total	11,657.2	21,453.8	5,376.2	38,487.2

Table: Block wise area covered in each water fluctuation zone

GROUND WATER ELECTRICAL CONDUCTIVITY DISTRIBUTION

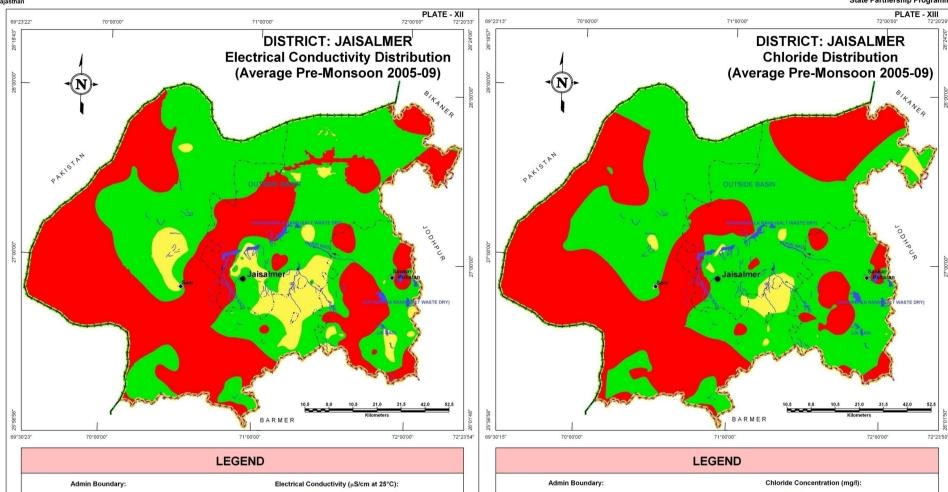
The Electrical conductivity (at 25°C) distribution map is presented in Plate – XII. The areas with moderately high EC values in ground water (2000-4000 μ S/cm) are shown in green color and occupy approximately 47% of the district area. The areas with high EC values (>4000 μ S/cm) are shown in red color and occupies 45% of the district area, which is not suitable for domestic purpose. Remaining small part of the district approximately 6% has low EC values in ground water (<2000 μ S/cm) is shown in yellow color, largely eastern part of Jaisalmer where the ground water is suitable for domestic purpose.

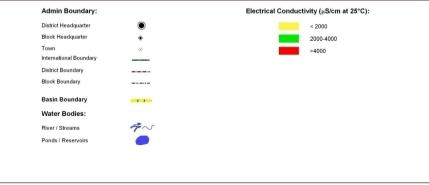
Electrical Conductivity Ranges	E	Block wise area coverage (sq km)					Total Area	
(μS/cm at 25°C)	Jaisalmer		Sam		Sankra		(sq km)	
(Ave. of years 2005-09)	Area	%age	Area	%age	Area	%age	(sq kiii)	
<2000	1,155.2	9.9	1,429.9	6.7	406.7	7.6	2,991.8	
2000-4000	6,688.8	57.4	8,763.1	40.8	2,753.2	51.2	18,205.1	
>4000	3,813.2	32.7	11,260.8	52.5	2,216.3	41.2	17,290.3	
Total	11,657.2	100.0	21,453.8	100.0	5,376.2	100.0	38,487.2	

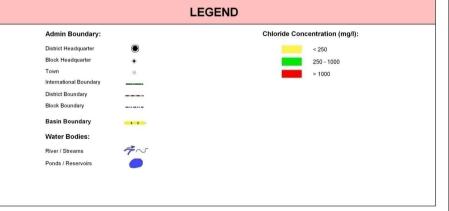
Table: Block wise area of Electrical conductivity distribution

GROUND WATER CHLORIDE DISTRIBUTION

High chloride concentration in ground water also renders it unsuitable for domestic and other purposes. The green colored regions in Plate – XIII are such areas where chloride concentration is moderately high (250-1000 mg/l) occupies approximately 53% of the district area and are not suitable for domestic purpose. The areas with high chloride concentration (>1000mg/l) are shown in red color and occupies approximately 44% of the district area, which is not suitable for domestic purpose. Remaining small part of the district approximately 2% falls under low chloride concentration (<250 mg/l) is shown in yellow color, largely southeastern part of Jaisalmer where the ground water is suitable for domestic purpose.


Chloride Concentration	Block wise area coverage (sq km)						
Range (mg/l)	Jaisalmer		Sam		Sankra		Total Area (sq km)
(Ave. of years 2005-09)	Area	%age	Area	%age	Area	%age	(sq kiii)
< 250	432.3	4.0	479.3	2.0	28.9	1.0	940.5
250-1000	6,983.9	60.0	9 <i>,</i> 556.5	45.0	3,977.5	74.0	20,517.9
> 1000	4,241.0	36.0	11,418.0	53.0	1,369.8	25.0	17,028.8
Total	11,657.2	100.0	21,453.8	100.0	5,376.2	100.0	38,487.2


Table: Block wise area of Chloride distribution



GROUND WATER FLUORIDE DISTRIBUTION

The Fluoride concentration map is presented in Plate – XIV. The areas with low concentration (<1.5 mg/l) are shown in yellow color and occupies 28% of the district area mainly in the western parts and as small isolated patches in the eastern part, which are suitable for domestic purpose. The areas with moderately high fluoride concentration (1.5-3.0 mg/l) are shown in green color and occupy about 53% of the district and also the remaining 19% of the district which has high Fluoride concentration (>3.0 mg/l, shown in red color), spread all over the Jaisalmer district are unsuitable for domestic purpose.

Fluoride concentration	E	Total Area					
Range (mg/l)	Range (mg/l) Jaisalmer		Sam		Sankra		Total Area
(Ave. of years 2005-09)	Area	%age	Area	%age	Area	%age	(sq km)
< 1.5	1,716.4	14.7	7,500.9	35.0	1,598.8	29.7	10,816.1
1.5-3.0	5,373.9	46.1	12,011.4	56.0	3,003.0	55.9	20,388.3
> 3.0	4,566.9	39.2	1,941.5	9.0	774.4	14.4	7,282.8
Total	11,657.2	100.0	21,453.8	100.0	5,376.2	100.0	38,487.2

Table: Block wise area of Fluoride distribution

GROUND WATER NITRATE DISTRIBUTION

High nitrate concentration in ground water renders it unsuitable for agriculture purposes. Plate – XV shows distribution of Nitrate in ground water. Low nitrate concentration (<50 mg/l) is shown in yellow color occupies approximately 41% of the district area which is suitable for agriculture purpose but significant part of it being arid, agriculture has a very limited feasibility. The areas with moderately high nitrate concentration (50-100 mg/l) are shown in green color occupy approximately 27% of the district area, largely western and northern part of the district. The eastern part of the district is slightly less arid but most of it falls within high nitrate concentration (>100 mg/l) areas shown in red colored patches. The district therefore has very limited potential for agriculture either in terms of ground water quality or soil and climatic conditions.

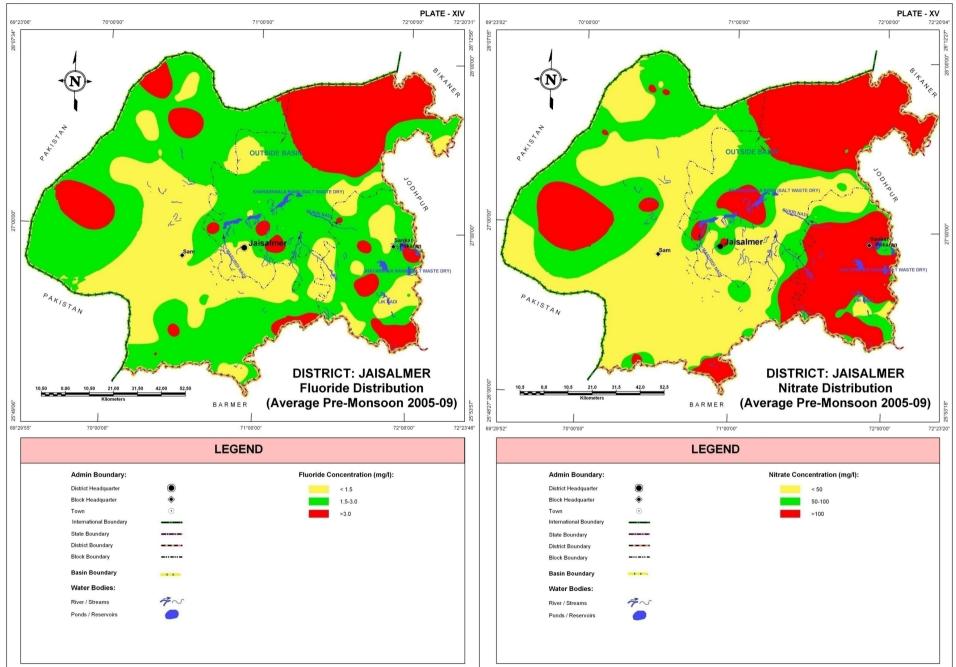

Nitrate concentration	E	Block wi	se area co	Total Area			
Range(mg/l)	Jaisalmer		Sam		Sankra		Total Area
(Ave. of years 2005-09)	Area	%age	Area	%age	Area	%age	(sq km)
< 50	3,298.9	28.3	11,940.0	55.7	585.7	10.8	15,824.6
50-100	2,623.4	22.5	6,791.1	31.6	1,003.1	18.7	10,417.6
>100	5,734.9	49.2	2,722.7	12.7	3,787.4	70.5	12,245.0
Total	11,657.2	100.0	21,453.8	100.0	5,376.2	100.0	38,487.2

Table: Block wise area of Nitrate distribution

DEPTH TO BEDROCK & UNCONFINED AQUIFER

Depth to Bedrock

The thick alluvial deposits are underlain by bedrock of different lithology and age. Plate – XVI depicts the distribution of bedrock depth from ground level. The beginning of massive bedrock has been considered for defining top of bedrock surface. The major rocks types occurring in the district are Sandstones, Rhyolites and Grainites. These rocks are overlain by eolian/alluvial deposits of sand, silt and admixture of these in different proportions and thicknesses. The map of depth to bedrock in meters below ground level reveals that the bedrock surface is highly undulating in the southern part whereas is relatively even northeastwards. It varies from upto 40m bgl to more than 300m bgl. Shallow bedrock depth is found in the central most part of Jaisalmer block (less than 40 meter ground level). Deepest occurrence of bedrock (indicating high alluvial thickness) is found in south of Sam block of the order 260m bgl to more than 300m bgl. The rest area of the district are having moderately deep bedrock is less, of the order of <60 m bgl and often reaching depth of upto 260m bgl.

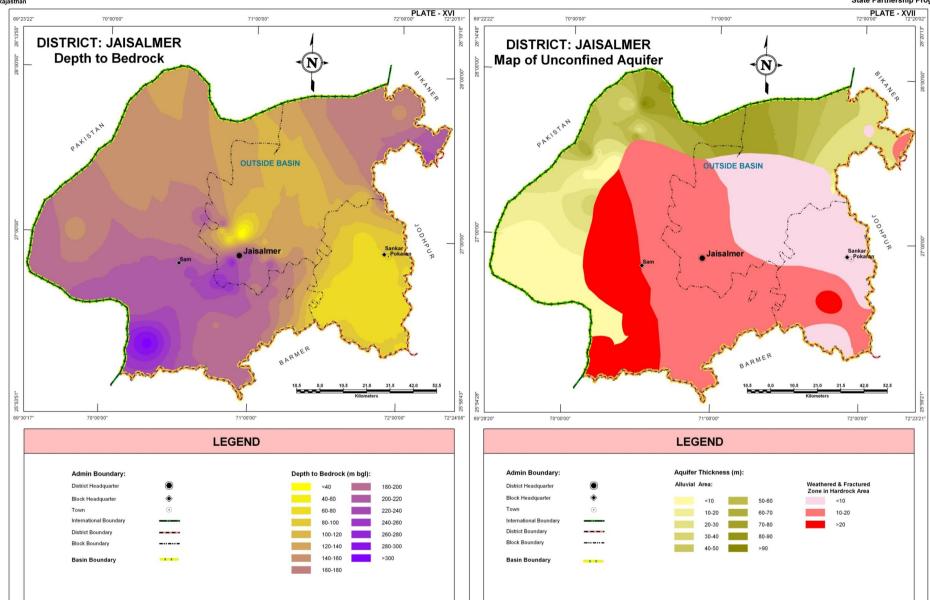
Douth to hadroak		Block wise area coverage (sq km)					
Depth to bedrock	Jaisalr	ner	San	า	Sanl	kra	Total Area
(m bgl)	Area	%age	Area	%age	Area	%age	(sq km)
< 40	19.9	-	-	-	-	-	19.9
40 - 60	44.2	-	-	-	-	-	44.2
60 - 80	92.4	1.0	33.7	-	2,949.1	54.9	3,075.2
80 - 100	179.6	2.0	95.9	-	1,424.3	26.5	1,699.8
100 - 120	2,570.1	22.0	423.0	2.0	839.7	15.5	3,832.8
120 - 140	3,056.5	26.0	1,883.4	9.0	113.4	2.1	5,053.3
140 - 160	1,693.0	15.0	5 <i>,</i> 077.9	24.0	33.3	0.6	6,804.2
160 - 180	2,426.5	21.0	4,080.0	19.0	13.5	0.3	6,520.0
180 - 200	749.4	6.0	4,696.0	22.0	2.9	0.1	5,448.3
200 – 220	516.2	4.0	3,289.6	15.3	-	-	3,805.8
220 - 240	228.5	2.0	933.7	4.3	-	-	1,162.2
240 - 260	76.4	1.0	454.0	2.1	-	-	530.4
260 - 280	4.5	-	279.7	1.3	-	-	284.2
280 - 300	-	-	174.4	1.0	-	-	174.4
> 300	-	-	32.5	-	-	-	32.5
Total	11,657.2	100.0	21,453.8	100.0	5,376.2	100.0	38,487.2

Unconfined aquifer

Alluvial material forms aquifers in entire western half of the district mainly covering Sam and Jaisalmer blocks. The thickness of unconfined aquifer varies from less than 10 m to about 100m with the thickest parts lying to the southeast of Sam block. The general thickness is upto 40m. Perusal of Plate – XVII reveals a moderate thickness of upto 40m in the area with pockets of more thick (>80m) unconfined eolian/alluvial aquifer material in the Sam and Jaisalmer region. Weathered, fractured and jointed rock formations mainly Sandstone occurring at shallower depths constitute good unconfined aquifers. Such zones range in thickness from less than 10 meter to around 30 meter spreading around in the district. In Sam region in the southwestern part a narrow strip and isolated patch in the southeast part of Sankar block has been reported thickness of aquifer in Sandstone more than 20m.

Alluvial areas

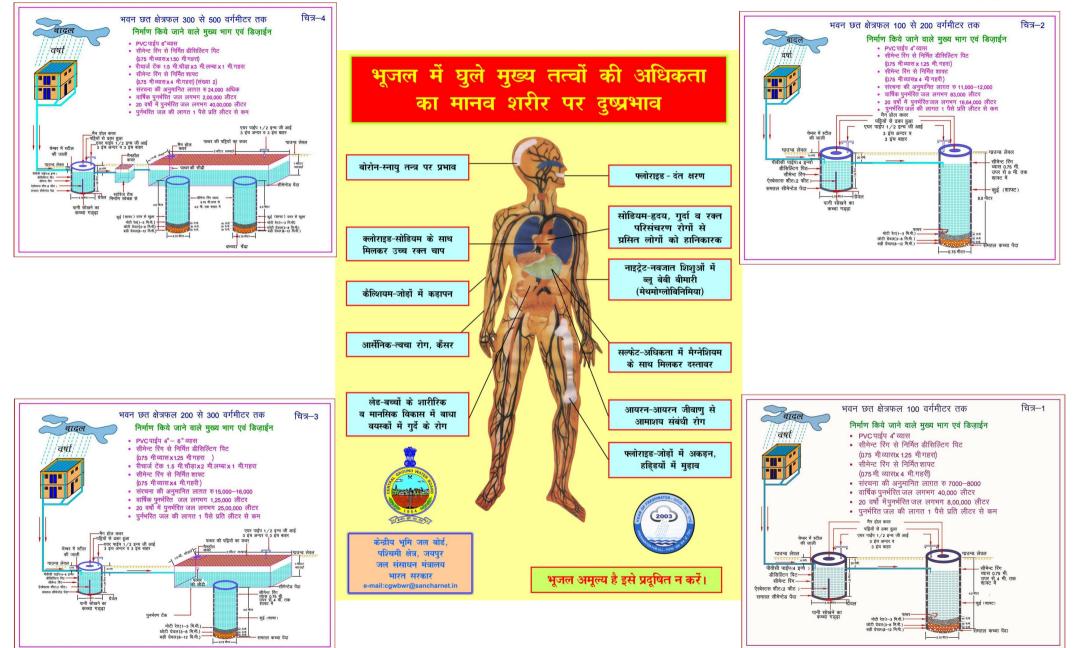
Unconfined aquifer	Block wise a	rea coverag	e (sq km)	Total Area
Thickness (m)	Jaisalmer	Sam	Sankra	(sq km)
< 10	27.3	3,371.2	-	3,398.5
10 - 20	70.7	1,608.5	-	1,679.2
20 - 30	1,363.3	1,097.2	-	2,460.5
30 - 40	-	216.1	-	216.1
40 – 50	765.7	895.8	-	1,661.5
50 - 60	554.1	812.1	-	1,366.2
60 – 70	741.4	634.4	-	1,375.8
70 – 80	800.9	1,082.1	-	1,883.0
80 - 90	-	113.9	-	113.9
> 90	-	7.3	-	7.3
Total	4,323.4	9,838.6	-	14,162.0


Hardrock areas:

Unconfined aquifer	Block wise a	Total Area		
Thickness (m)	Jaisalmer	Sam	Sankra	(sq km)
<10	3,871.9	8	<10	3,871.9
10 - 20	3,461.9	7,168.1	10-20	3,461.9
> 20	-	4,439.1	> 20	-
Total	7,333.8	11,615.2	Total	7,333.8

Glossary of terms

S. No.	Technical Terms	Definition
4	4.01.1155.0	A saturated geological formation which has good permeability to
1	AQUIFER	supply sufficient quantity of water to a Tube well, well or spring.
2	ARID CLIMATE	Climate characterized by high evaporation and low precipitation.
3	ARTIFICIAL RECHARGE	Addition of water to a ground water reservoir by man-made activity
		The sum total of all atmospheric or meteorological influences
4	CLIMATE	principally temperature, moisture, wind, pressure and evaporation
		of a region.
5	CONFINED AQUIFER	A water bearing strata having confined impermeable overburden. In
J	CONTINED AQUITER	this aquifer, water level represents the piezometric head.
6	CONTAMINATION	Introduction of undesirable substance, normally not found in water,
0	CONTRIMINATION	which renders the water unfit for its intended use.
7	DRAWDOWN	The drawdown is the depth by which water level is lowered.
8	FRESH WATER	Water suitable for drinking purpose.
9	GROUND WATER	Water found below the land surface.
10	GROUND WATER BASIN	A hydro-geologic unit containing one large aquifer or several
10	GROOND WATER BASIN	connected and interrelated aquifers.
11	GROUND WATER	The natural infiltration of surface water into the ground.
11	RECHARGE	
12	HARD WATER	The water which does not produce sufficient foam with soap.
13	HYDRAULIC	A constant that serves as a measure of permeability of porous
13	CONDUCTIVITY	medium.
14	HYDROGEOLOGY	The science related with the ground water.
15	HUMID CLIMATE	The area having high moisture content.
16	ISOHYET	A line of equal amount of rainfall.
17	METEOROLOGY	Science of the atmosphere.
18	PERCOLATION	It is flow through a porous substance.
19	PERMEABILITY	The property or capacity of a soil or rock for transmitting water.
20		Value of hydrogen-ion concentration in water. Used as an indicator
20	рН	of acidity (pH < 7) or alkalinity (pH > 7).
21	PIEZOMETRIC HEAD	Elevation to which water will rise in a piezometers.
22	RECHARGE	It is a natural or artificial process by which water is added from
22	RECHARGE	outside to the aquifer.
23	SAFE YIELD	Amount of water which can be extracted from ground water without
23	SAFE HELD	producing undesirable effect.
24	SALINITY	Concentration of dissolved salts.
25	SEMI-ARID	An area is considered semiarid having annual rainfall between 10-20
25	SEIVII-ARID	inches.
26	SEMI-CONFINED	Aquifer overlain and/or underlain by a relatively thin semi-pervious
20	AQUIFER	layer.
77		Quantity of water which is released by a formation after it's
27	SPECIFIC YIELD	complete saturation.
20	TOTAL DISSOLVED	Total weight of dissolved mineral constituents in water per unit
28	SOLIDS	volume (or weight) of water in the sample.


S. No.	Technical Terms	Definition				
29	TRANSMISSIBILITY	It is defined as the rate of flow through an aquifer of unit width and total saturation depth under unit hydraulic gradient. It is equal to product of full saturation depth of aquifer and its coefficient of permeability.				
30	UNCONFINED AQUIFER	A water bearing formation having permeable overburden. The water table forms the upper boundary of the aquifer.				
31	UNSATURATED ZONE	The zone below the land surface in which pore space contains both water and air.				
32	WATER CONSERVATION	Optimal use and proper storage of water.				
33	WATER RESOURCES	Availability of surface and ground water.				
34	WATER RESOURCES MANAGEMENT	Planned development, distribution and use of water resources.				
35	WATER TABLE	Water table is the upper surface of the zone of saturation at atmospheric pressure.				
36	ZONE OF SATURATION	The ground in which all pores are completely filled with water.				
37	ELECTRICAL CONDUCTIVITY	Flow of free ions in the water at 25C mu/cm.				
38	CROSS SECTION	A Vertical Projection showing sub-surface formations encountered in a specific plane.				
39	3-D PICTURE	A structure showing all three dimensions i.e. length, width and depth.				
40	GWD	Ground Water Department				
41	CGWB	Central Ground Water Board				
42	CGWA	Central Ground Water Authority				
43	SWRPD	State Water Resources Planning Department				
44	EU-SPP	European Union State Partnership Programme				
45	TOPOGRAPHY	Details of drainage lines and physical features of land surface on a map.				
46	GEOLOGY	The science related with the Earth.				
47	GEOMORPHOLOGY	The description and interpretation of land forms.				
48	PRE MONSOON SURVEY	Monitoring of Ground Water level from the selected DKW/Piezometer before Monsoon (carried out between 15th May to 15th June)				
10	POST-MONSOON	Monitoring of Ground Water level from the selected DKW/Piezometer				
49	SURVEY	after Monsoon (carried out between 15th October to 15th November)				
50	PIEZOMETER	A non-pumping small diameter bore hole used for monitoring of static water level.				
51	GROUND WATER FLUCTUATION	Change in static water level below ground level.				
52	WATER TABLE	The static water level found in unconfined aquifer.				
53	DEPTH OF BED ROCK	Hard & compact rock encountered below land Surface.				
54	G.W. MONITORING STATION	Dug wells selected on grid basis for monitoring of state water level.				
55	EOLIAN DEPOSITS	Wind-blown sand deposits				

(Contd...)

Myths and Facts about Ground Water

S No	Myths	Facts
1	What is Ground Water an underground lake a net work of underground rivers a bowl filled with water 	Water which occurs below the land in geological formations/rocks is Ground water
2	Ground Water occurs everywhere beneath the Land Surface	Not really, it depends on the nature of rock formation
3	There is a relationship between ground water and surface water	Not all the places. Near streams/rivers there is relation
4	Groundwater is not renewable resource	It is renewable source and every year it is being recharged through rain/applied irrigation etc
5	Ground water is unlimited and deeper you drill more discharge	It is limited to annual recharge from rain/applied irrigation. The discharge may not increase if you go deeper
6	Ground Water moves rapidly	The movement of ground water is very slow
7	Ground water pumped from wells is thousands of years old	Generally the ground water being tapped through wells is a few years old
8	If water taste good—it is safe to drink	It may have other chemicals e.g. fluoride, nitrates etc which are harmful
9	Water from free flowing tube wells is very pure	This water can also be contaminated so test before use
10	If I recharge my TW/DW/HP it will not benefit me	It will also benefit you and also adjoing wells
11	There is no static ground water resources in Rajasthan	Rajasthan is also having Static GW resources, and being tapped in most of areas as GW annual withdrawal is more than annual recharge
12	I cannot meet annual cooking and drinking water requirement by rain water harvesting	The water requirement for drinking and cooking is only 8 lit/day. You can harvest this water for family of 5 persons from roof top or paved area of 75 Sq m to meet annual requirement
13	You can increase ground water recharge	This can be done by harvesting the rain water and storing in sub surface reservoir (GW) by constructing the recharge structures
14	You cannot use abandoned TW/HP/DW for ground water recharge	These should be used as recharge structures as harvested rain water is directly put into GW reservoir
15	Putting waste near HP/TW will not cause any problem	Such actions will pollute wells and water

No. No. of Co.

Rolta India Limited

Central & Registered Office Rolta Tower A, Rolta Technology Park, MIDC, Andheri (East), Mumbai - 400 093 Tel : +91 (22) 2926 6666, 3087 6543 Fax : +91 (22) 2836 5992 Email : indsales@rolta.com

www.rolta.com

.