Hydrogeological Atlas of Rajasthan Jodhpur District

Osi

2013

Balesar

Shergarh

Bawar

Jodhpur

Bhopalga

European Union State Partnership Programme

Ground Water Department, Rajasthan

Hydrogeological Atlas of Rajasthan

Jodhpur District

Contents:

List of Plates	Title	Page No
Plate I	Administrative Map	2
Plate II	Topography	4
Plate III	Rainfall Distribution	4
Plate IV	Geological Map	6
Plate V	Geomorphological Map	6
Plate VI	Aquifer Map	8
Plate VII	Stage of Ground Water Development (Block wise) 2009	8
Plate VIII	Location of Exploratory and Ground Water Monitoring Stations	10
Plate IX	Depth to Water Level (Pre-Monsoon 2010)	10
Plate X	Water Table Elevation (Pre-Monsoon 2010)	12
Plate XI	Water Level Fluctuation (Pre-Post Monsoon 2010)	12
Plate XII	Electrical Conductivity Distribution (Average Pre-Monsoon 2005-09)	14
Plate XIII	Chloride Distribution (Average Pre-Monsoon 2005-09)	14
Plate XIV	Fluoride Distribution (Average Pre-Monsoon 2005-09)	16
Plate XV	Ground Water Nitrate Distribution (Average Pre-Monsoon 2005-09)	16
Plate XVI	Depth to Bedrock	18
Plate XVII	Map of Unconfined Aquifer	18
	Glossary of terms	19

JODHPUR

Location:

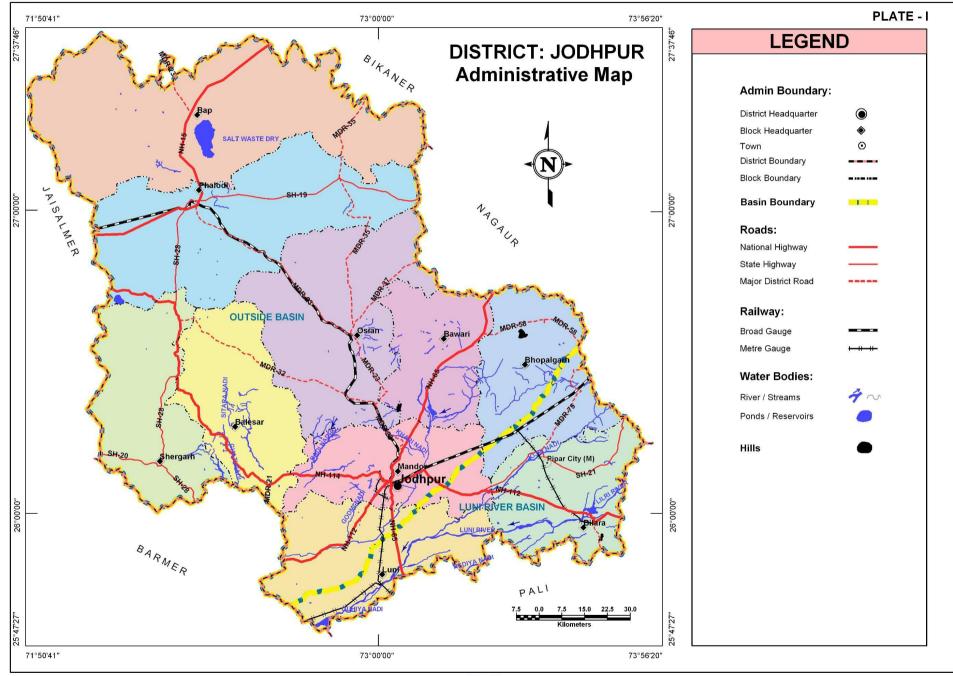
Jodhpur is located in the western part of Rajasthan. It is bounded in the North by Bikaner district, in the East by Nagaur district, South by Pali and Barmer districts and Jaisalmer district in the West. It stretches between 25° 50' 02.92" to 27° 38' 41.37" North latitude and 71° 48' 08.24" to 73° 52' 36.25" East longitude covering an approximate area of 22,697 sq km. Major part of the district does not have a systematic drainage system, so most of the central and northern part is part of an 'Outside' Basin whereas the Luni River drains in the southeastern part.

Administrative Set-up:

Administratively Jodhpur district is part of Jodhpur division. This district is divided into 10 blocks. The following table summarizes the basic statistics of the district at block level.

S. No.	Block Name	Population	Area	% of Block	Total Number of Towns
5. NO.	DIOCK INATTIE	(Based on 2001 census)	(Sq.km)	Area	and Villages
1	Balesar	174,179	1,839.1	8.1	125
2	Вар	157,290	4,341.6	19.1	125
3	Bawari	137,891	1,354.8	6.0	67
4	Bhopalgarh	202,321	1,806.0	8.0	86
5	Bilara	251,946	1,620.3	7.1	92
6	Luni	229,097	1,999.0	8.8	137
7	Mandor	1,002,308	1,605.2	7.1	108
8	Osian	284,290	2,847.4	12.5	108
9	Phalodi	274,674	3,314.2	14.6	112
10	Shergarh	162,656	1,969.4	8.7	107
	Total	2,876,652	22,697.0	100.0	1067

Jodhpur district has 1,063 villages and 4 towns, three of the four towns being block headquarters as well.


Climate:

The climate of the district is characterized by extremes of temperature, uncertain rainfall and dryness. The winter season which starts in November lasts till February, followed by summer lasting up to June. Period from July to mid-September is monsoon season. There is a good variation between maximum and minimum temperature within the district, while the average maximum temperature is about 47°C, the minimum is 3°C. The average total annual rainfall is 320 mm.

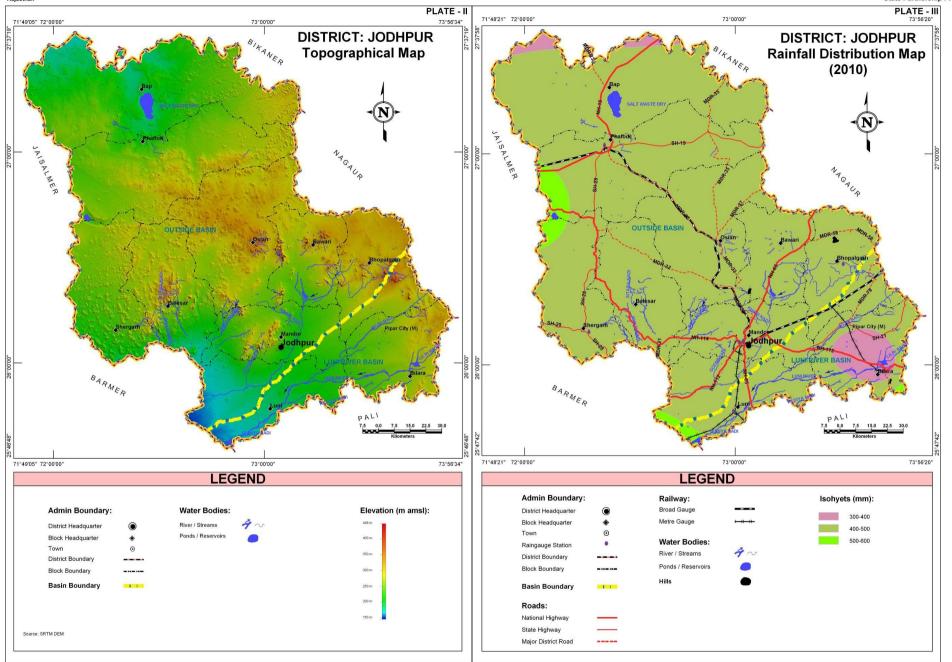
Physiographically, the district can be divided into three distinct units, viz. Alluvial plain, Escarpment and Sand dunes. The alluvial plain between Jodhpur and Bilara has a gently undulating topography with maximum elevation 260m. The plain from Bilara in the east to Shergarh in the west is encircled by a group of hills, isolated hillocks and ridges separated by alluvium and sand filled valley. The western and north-western parts of the district are characterized by sand dunes. The Luni River enters the district near Jhak and flows in southwesterly direction covering Bilara, Mandor and Luni blocks, leaving the district at Dhundara to enter in the Barmer district. Minimum elevation (150 m) is found in the extreme lower part of Luni block whereas highest elevation is reached (448 m) in Bhopalgarh block.

Table: Block wise minimum and maximum elevation										
S. No.	Block Name	Minimum Elevation (m amsl)	Maximum Elevation (m amsl)							
1	Balesar	165.8	358.1							
2	Вар	159.6	328.0							
3	Bawari	223.1	435.1							
4	Bhopalgarh	231.6	450.4							
5	Bilara	221.1	368.0							
6	Luni	142.7	283.7							
7	Mandor	165.1	395.6							
8	Osian	229.6	387.4							
9	Phalodi	196.4	355.8							
10	Shergarh	176.6	316.2							

Table: Block wise minimum and maximum elevation

RAINFALL

The rainfall is very scanty. The general distribution of rainfall across can be visualized from isohyets presented in the Plate III where most of the district received rainfall in the range of 400-500mm in year 2010. The total average annual rainfall is 449.7 mm based on the data of available blocks. Maximum rainfall occurs in Bilara block (566.9 mm) whereas minimum was also in Bilara block (340.8 mm). Shergarh block has received maximum average annual rainfall about 480.4 mm.

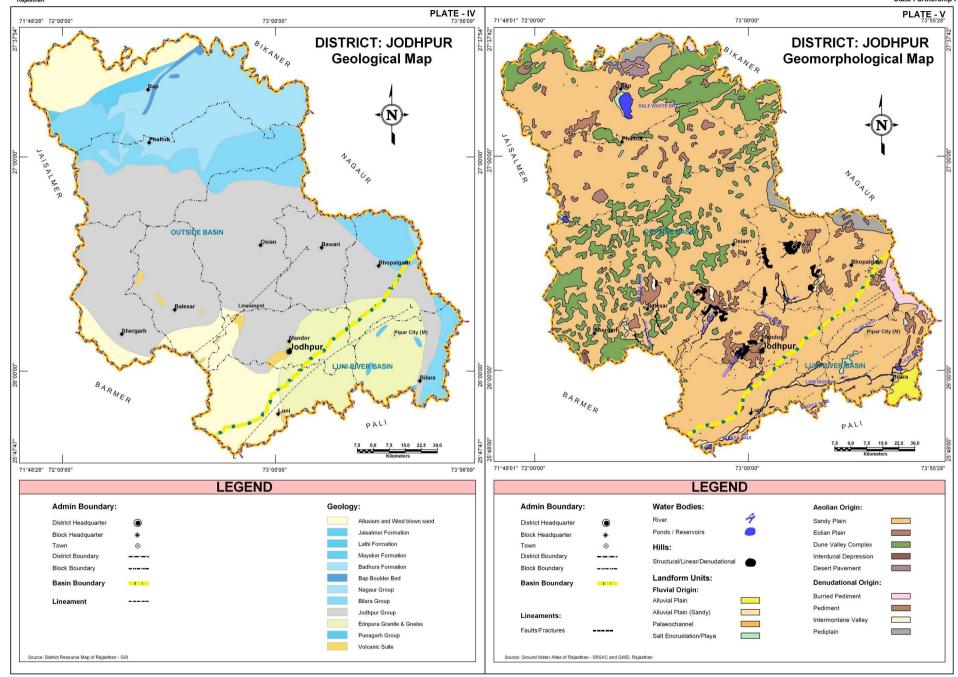

Table: Block wise annual rainfall statistics (derived from year 2010 meteorological station data)

Block Name	Minimum Annual Rainfall (mm)	Maximum Annual Rainfall (mm)	Average Annual Rainfall (mm)
Balesar	449.1	483.7	464.1
Вар	386.6	488.3	425.3
Bawari	435.0	467.9	446.4
Bhopalgarh	414.7	493.5	464.0
Bilara	340.8	566.9	410.1
Luni	419.0	516.0	466.0
Mandor	412.9	469.2	438.9
Osian	433.6	464.2	442.3
Phalodi	420.2	520.9	459.5
Shergarh	467.6	514.0	480.4

The geological configuration of Jodhpur district is represented by rocks ranging from Pre-Cambrian to Recent age. The regional geological set up indicates that the older rocks of Delhi Super Group represented by Punagarh Group include basic volcanics whereas of the Marwar Super Group, present in major part of the district is represented by Jodhpur-Bilara and Nagaur Groups. The igneous phase is represented by Erinpura Granites and Gneisses. The Palaezoic Era is represented by sandstone (Badhura formation and Bap boulder beds) of Permo-Carboniferous System. The Jurassic Era is represented by Lathi, Mayeker and Jaisalmer formations, which consist of Sandstone, Grit and Conglomerate. Alluvium and wind-blown sand cover large parts of the district. The district is traversed by major lineaments: Jaisalmer-Barwani lineaments trending NW-SE, Luni- Sukri lineament trending NE-SW. Following is the regional geological succession of rock types encountered in and around Jodhpur district.

Super Group	Group/Series	Formation		
Quaternary	Recent to Sub-Recent	Alluvium andblown sand		
Permo-Carboniferous	Bhadaura Series	Deviders, and endelage		
Permo-Carbonnerous	(Bap boulder bed)	Boulders, sand andclays		
	Nagaur Group	Sandstone, Gypsum, siltstone and limestone		
Marwar	Bilara Group	Limestone, cherty and dolomitic with shale		
	Jodhpur Group	Sandstone and shale		
Deat Dalhi	Malani suites	Rhyolite with tuffs and granite		
Post-Delhi	Jalore granite	Granite and Gneiss		
Delhi		Schist and Phyllite		

GEOMORPHOLOGY

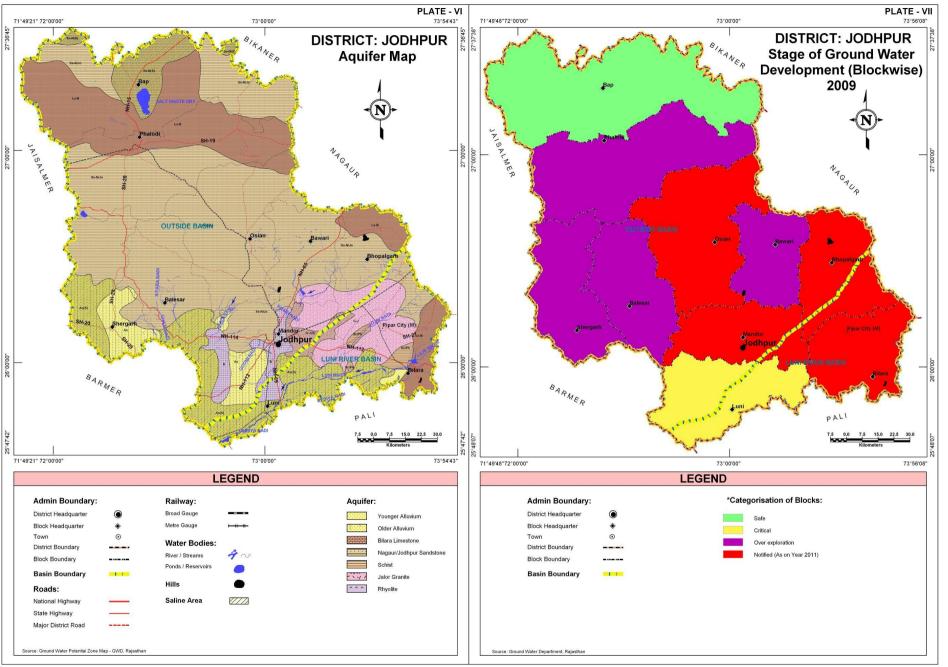

Table: Geomorphologic units, their description and distribution

Origin	Landform Units	Description of lithology
	Alluvial Plain	Mainly undulating land scape formed due to fluvial activity consists of gravels, sand, silt and clay. Terrain mainly undulating, produced by extensive deposition
		of alluvium by river system.
	Alluvial Plain (Sandy)	Flat to gentle undulating plain formed due to fluvial activity, mainly comprises of gravels, sand, silt and clay with unconsolidated material of varying lithology,
Fluvial	Anaviar Fiant (Sanay)	predominantly sand along river.
Fluviai	Valley Fill	Formed by fluvial activity, usually at lower topographic locations, comprising of boulders, cobbles, pebbles gravels, sand, silt and clay. The unit has
	ValleyTh	consolidated sediment deposits.
	Palaeochannel	Mainly burried on abandoned stream/river courses, comprising of coarse textured material of variable sizes.
	Salt Encrustation/Playa	Topographical depressions comprising of clay, silt, sand and soluble salts, usually undrained and devoid of vegetation.
	Pediment	Broad gently sloping rock flooring, erosional surface of low relief between hill and plain, comprised of varied lithology, crisscrossed by fractures & faults.
Denudational	Buried Pediment	Pediment covered essentially with relatively thicker alluvial, colluvial or weathered materials.
Denudational	Intermontane Valley	Depression between mountain/pediment zone, generally broad & linear filled with colluvial deposit.
	Pediplain	Pediplain essentially covered with soil cover in western part.
	Sandy Plain	Formed of aeolian activity, wind-blown sand with gentle sloping to undulating plain, comprising of coarse sand, fine sand, silt & clay.
	Eolian Plain	Formed by aeolian activity, with sand dunes of varying heights, size, slope. Long stretches of sand sheet. Gently sloping flat to undulating plain, comprised of
Applian		fine to medium grained sand and silt. Also scattered xerophytic vegetation.
Aeolian	Dune Valley Complex	Clusters of dunes and inter-dunal spaces with undulating topography formed due to wind-blown activity comprising of unconsolidated sand and silt.
	Interdunal Depression	Slightly depressed area in between the dunal complex showing moisture and fine sediments.
	Desert Pavement	Desert plain having coarse angular
Hill	Denudational Hill	Steep sided, relict hills undergone denudation, comprising of varying lithology with joints, fractures and lineaments.

Table: aquifer potential zones their area and their description

Aquifer in Potential Zone	Area	%age of	Description of the unit/Occurrence
riquiter in Fotential zone	(sq km)	total	
Younger Alluvium	140.8	0.6	Younger and Older Alluvium mainly composed of unconsolidated to semi consolidated clay, sand gravel, pebble in varying
Older Alluvium	932.5	4.1	proportions. Thickness of the litho unit varies considerably due to undulating bed rock topography. It has been tapped maximum in area south west of the district. It occurs along the stream courses and flood plains of Luni, Mithri and Jojri. Part of the litho unit in Shergarh and localized pockets in Bilara and Luni blocks which has potable ground water that has been categorized as potential area.
Older Alluvium Saline Area	2,400.9	10.6	Part of the litho unit in Luni and localized pockets in Shergarh, Bilara and Balesar blocks which have non-potable ground water have been categorized as non-potential area (Saline area).
Jalore Granite	1,498.6	6.6	Jalore Granite belongs to Post Delhi Group, it is grey or pink in colour, medium to coarse grained, and non-porphyritic. It occupies Bhopalgarh, Bilara, Mandor and Bawari blocks.
Jalore Granite Saline Area	127.8	0.6	Part of Jalore Granite aquifer is saline also.
Bilara Limestone	4,127.4	18.2	The Bilara limestone is potential source of ground water. These are mostly dolomitic, grey or dark grey to black. The litho unit occupies extensive area in Bap and Phalodi blocks. Parts of Bilara, Bhopalgarh and Osian blocks have also been demarcated with limestone aquifer.
Rhyolite	621.5	2.7	Rhyolites are hard and compact, buff, dark brown to greenish in colour. Ground water occurs in weathered and fractured zones, hence it forms poor aquifer. It occupies Luni and Mandor blocks.
Schist	171.5	0.8	Schist belongs to Delhi Super Group occurring in south eastern part as isolated patches overlying granite. Small patches of Schist occur in Bilara block.
Nagaur Jodhpur Sandstone	11,375.7	50.1	The major aquifer in the district is formed in Sandstone; it belongs to Marwar Super Group. The Sandstone of this Group forms the chief source of ground water which occurs under confined to semi-confined conditions. Sandstone is red to pink or buff coloured, very hard and compact. It occupies Osian, Phalodi, Balesar, Bap, Bawari, Shergarh, Bhopalgarh, Mandor, and Bilara blocks in order of area encompassed by the aquifer in potential area.
Nagaur Jodhpur Sandstone - Saline Area	793.1	3.5	Part of the litho unit in Bap block has non potable ground water has been categorized as non-potential area (Saline area)
Hills	507.2	2.2	Hills and intervening valleys
Total	22,697.0	100.0	

STAGE OF GROUND WATER DEVELOPMENT


Categorization on the basis of stage of development of ground water	Block Name
Safe	Вар
Critical	Luni
Over Exploited	Bawari, Balesar, Phalodi, Shergarh
Over Exploited (Notified)	Bhopalgarh, Bilara, Mandor, Osian

Basis for categorization: Ground water development <= 70% - Safe; >70%; >90% and <=100% - Critical and >100% - Over-Exploited. In Notified blocks development of GW is not permitted any more.

LOCATION OF EXPLORATORY AND GROUND WATER MONITORING WELLS

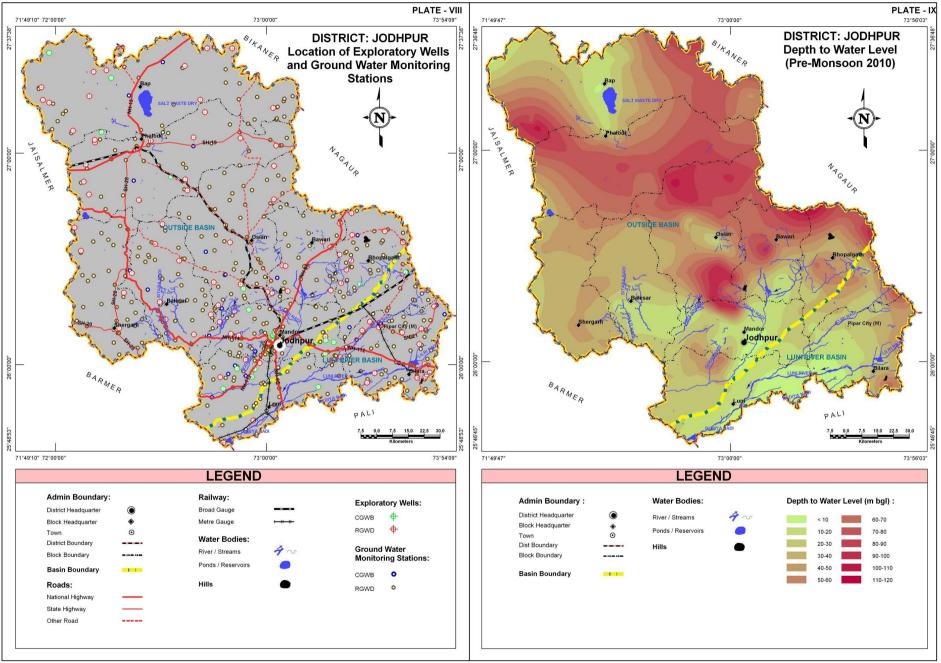
Jodhpur district has a well distributed network of exploratory wells (119) and ground water monitoring stations (507) in the district owned by RGWD (92 and 481 respectively) and CGWB (27 and 26 respectively). The exploratory wells have formed the basis for delineation of subsurface aquifer distribution scenario in three dimensions. Benchmarking and optimization studies suggest that ground water level monitoring network is sufficiently distributed for appropriate monitoring but for water quality 29 additional wells in different blocks are recommended to be added to existing network for optimum monitoring of the aquifers.

Table: Block wise count of wells (existing and recommended)													
Block Name	Explo	oratory W	/ells		ound Wat oring Sta		Recommended additional wells for optimization of monitoring network						
	CGWB	RGWD	Total	CGWB	RGWD	Total	Water Level	Water Quality					
Balesar	0	8	8	2	43	45	0	9					
Вар	3	12	15	2	36	38	0	9					
Bawari	0	8	8	1	29	30	0	0					
Bhopalgarh	2	8	10	2	55	57	0	0					
Bilara	0	14	14	6	52	58	0	0					
Luni	5	5	10	5	46	51	0	2					
Mandor	13	12	25	3	96	99	0	3					
Osian	1	8	9	3	53	56	0	0					
Phalodi	2	13	15	2	34	36	0	3					
Shergarh	1	4	5	0	37	37	0	3					
Total	27	92	119	26									

Table: Block wise count of wells (existing and recommended)

DEPTH TO WATER LEVEL (PRE MONSOON – 2010)

Depth to water level shows large variation ranging from less than 10m below ground level to about 110m below ground level. Most of the alluvial part of Luni block and adjoining parts falling within Bilara, Luni and Mandor blocks the ground water occurs at shallow depths ranging from less than 10 – 50m. There is also a shallow water zone in North around Bap the depth to water level is low, reaching about 30m. Otherwise, in general, in the central and northern parts the ground water occurs at deeper levels i.e., beyond 50m and reaching even upto 110m in major part of Osian bloc, Northern part of Bawari block, major part of Phalodi and eastern and southwestern parts of Bap block.


Depth to water level		Block wise area coverage (sq km)										
(m bgl)	Balesar	Вар	Bawari	Bhopalgarh	Bilara	Luni	Mandor	Osian	Phalodi	Shergarh	(sq km)	
< 10	-	35.0	-	-	239.8	601.9	154.1	-	-	-	1,030.8	
10 - 20	439.6	641.5	149.2	13.0	376.5	487.3	652.2	20.2	-	8.4	2,787.9	
20 - 30	710.5	704.3	130.2	254.5	448.8	586.5	479.9	89.9	12.0	180.5	3,597.1	
30 - 40	419.1	482.7	109.1	377.1	283.3	189.1	159.4	289.9	83.2	1,010.2	3,403.1	
40 – 50	241.7	466.5	104.4	455.6	176.8	100.2	55.8	401.8	199.2	651.3	2,853.3	
> 50	28.2	2,011.6	861.9	705.8	95.1	34.0	103.8	2,045.6	3,019.8	119.0	9,024.8	
Total	1,839.1	4,341.6	1,354.8	1,806.0	1,620.3	1,999.0	1,605.2	2,847.4	3,314.2	1,969.4	22,697.0	

* The area covered in the derived maps is less than the total district area since the hills have been excluded from interpolation/contouring.

WATER TABLE ELEVATION (PRE MONSOON – 2010)

State Partnership Programm

The general ground water flow directions are towards southwest where the Luni River drains out of the district. There are two other depressions one North of Jodhpur and other

around Bap which also have lower water tables resulting into ground water flow towards these areas.

Table. Diock wise area covered in each water table elevation range													
Water table elevation		Block wise area coverage (sq km)											
range (m amsl)	Balesar	Вар	Bawari	Bhopalgarh	Bilara	Luni	Mandor	Osian	Phalodi	Shergarh	(sq km)		
120-140	-	-	-	-	-	154.8	-	-	-	18.2	173.0		
140-160	5.4	70.2	-	-	-	702.2	26.5	69.3	-	60.3	933.9		
160-180	92.8	3,318.2	19.2	-	-	426.4	154.0	226.5	452.2	139.4	4,828.7		
180-200	357.7	586.1	133.6	2.7	-	423.4	306.4	692.7	1,976.2	358.4	4,837.2		
200-220	317.1	213.8	511.4	45.2	42.1	290.5	937.5	1,221.6	838.5	828.6	5,246.3		
220-240	1,064.7	153.3	429.7	771.8	760.1	1.7	168.1	530.7	47.3	564.5	4,491.9		
240-260	1.4	-	260.9	916.6	792.3	-	12.7	96.7	-	-	2,080.6		
260-280	-	-	-	69.7	25.8	-	-	9.9	-	-	105.4		
Total	1,839.1	4,341.6	1,354.8	1,806.0	1,620.3	1,999.0	1,605.2	2,847.4	3,314.2	1,969.4	22,697.0		

Table: Block wise area covered in each water table elevation range

WATER LEVEL FLUCTUATION (PRE TO POST MONSOON 2010)

The red shaded areas in the Plate – XI indicate the areas that showed negative fluctuation i.e., water table has gone down in Post-Monsoon period as compared to Pre-Monsoon water levels. Otherwise, in general, most of the district has shown general rise in water table upto 4m and there are also some pockets around Bhopalgarh, Luni and Bilara blocks that have shown significant localized recharge.

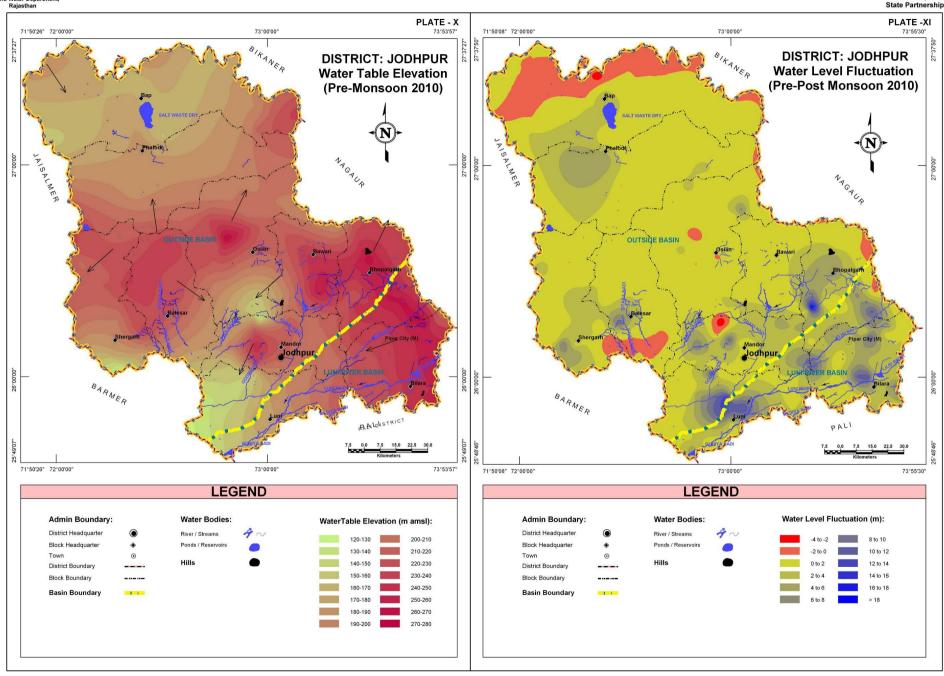

Water level fluctuation		Block wise area coverage (sq km)											
range (m)	Balesar	Вар	Bawari	Bhopalgarh	Bilara	Luni	Mandor	Osian	Phalodi	Shergarh	(sq km)		
-4 to -2	-	13.7	-	-	-	-	10.7	-	-	-	24.4		
-2 to 0	174.3	1,284.0	0.9	107.9	2.9	0.3	44.3	60.4	19.6	86.6	1,781.2		
0 to 2	1,394.3	2,472.6	1,103.4	520.5	358.7	815.8	432.5	2,591.2	2,297.8	1,296.0	13,282.8		
2 to 4	181.1	544.7	243.8	566.4	666.0	600.7	819.5	173.6	659.0	471.1	4,925.9		
4 to 6	61.0	26.6	6.7	441.2	391.6	242.8	216.9	19.7	337.8	100.5	1,844.8		
6 to 8	24.3	-	-	98.3	127.5	140.5	67.3	2.5	-	15.2	475.6		
8 to 10	4.1	-	-	47.0	60.3	93.5	14.0	-	-	-	218.9		
10 to 12	-	-	-	12.6	13.3	83.9	-	-	-	-	109.8		
12 to 18	-	-	-	12.1	-	21.5	-	-	-	-	33.6		
Total	1,839.1	4,341.6	1,354.8	1,806.0	1,620.3	1,999.0	1,605.2	2,847.4	3,314.2	1,969.4	22,697.0		

Table: Block wise area covered in each water fluctuation zone

GROUND WATER ELECTRICAL CONDUCTIVITY DISTRIBUTION

The electrical conductivity of ground water ranges from less than 2000 µS/cm to more than 10,000µS/cm. Osian, Phalodi, Balesar and Bhopalgarh blocks are largely fresh to marginally brackish water areas. Even distribution of fresh and saline ground water is seen in Bap, Shergarh and Jodhpur blocks. Rest of the blocks are largely in the brackish to saline water category. The analysis is based on average of EC values observed during Pre-Monsoon between years 2005-09.

Electrical Conductivi	ity Ranges									Block wis	se area o	coverage	(sq km)									
(µS/cm at 25	°Ć)	Bale	sar	Ba	р	Baw	ari	Bhopa	lgarh	Bila	ra	Lui	ni	Man	dor	Osia	an	Phal	odi	Sherg	garh	Total Area
(Ave. of years 20	05-09)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq km)
< 2000		854.6	46.5	79.0	1.8	79.4	5.7	354.7	19.7	79.7	4.9	77.7	3.8	308.8	19.2	1,911.4	67.1	1,106.4	33.4	290.6	14.8	5,142.3
2000-4000		522.7	28.4	1,577.3	36.3	1,151.8	85.2	1,054.5	58.3	157.3	9.6	358.7	18.0	409.4	25.5	912.5	32.1	1,715.6	51.8	765.6	38.9	8,625.4
>4000		461.8	25.1	2,685.3	61.9	123.6	9.1	396.8	22.0	1,383.3	85.5	1,562.6	78.2	887.0	55.3	23.5	0.8	492.2	14.8	913.2	46.3	8,929.3
Total		1,839.1	100.0	4,341.6	100.0	1,354.8	100.0	1,806.0	100.0	1,620.3	100.0	1,999.0	100.0	1,605.2	100.0	2,847.4	100.0	3,314.2	100.0	1,969.4	100.0	22,697.0

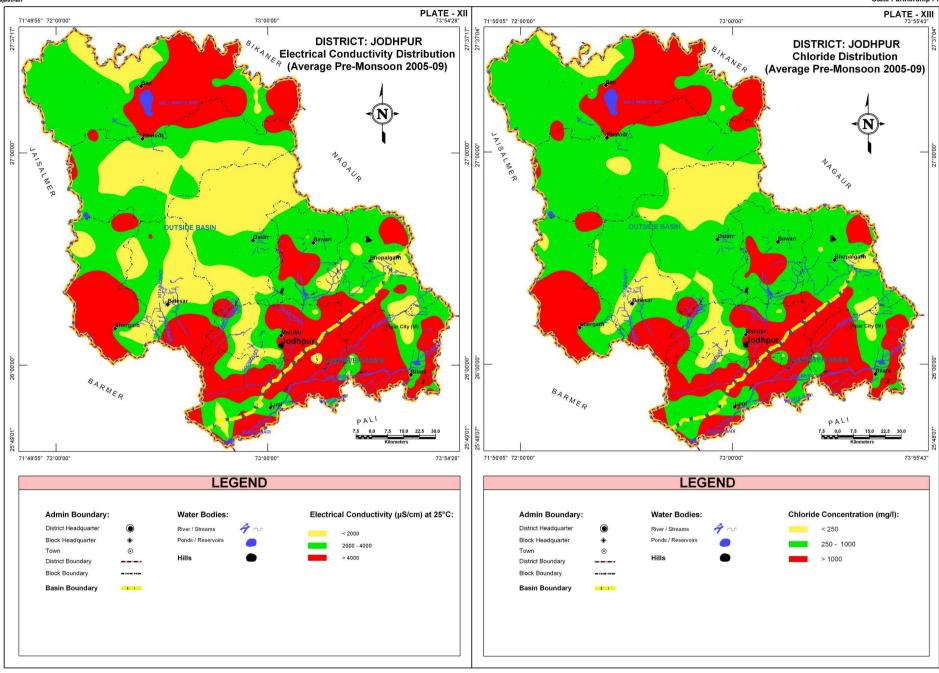
Table: Block wise area of Electrical conductivity distribution

GROUND WATER CHLORIDE DISTRIBUTION

Very high chloride concentration and its erratic variation in ground water is an important concern. In Jodhpur district, the low concentration pockets are largely in the central part of the district as found north of Osian, around Balesar and to the western part of Mandor Block. Small pockets of low chloride concentration are found in the extreme east (east of Bhopalgarb and Pipar cities) and in the north (north of Bap). Very high concentrations (unsuitable for drinking and domestic purposes) are seen in southern parts of the district and in the Northern parts. In between these the areas have moderate concentrations suitable for drinking and domestic purposes.

Table:	Block	wise ar	rea of	Chloride	distribution	

								I	Block wis	e area c	overage	(sq km)									
Chloride Concentration	Bales	ar	Вар)	Baw	ari	Bhopa	lgarh	Bilaı	ra	Lur	ni	Mano	dor	Osia	n	Phale	odi	Sherg	arh	Total Area
Range (mg/l)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq km)
< 250	419.9	22.8	171.6	4.0	0.8	0.1	10.3	0.6	5.3	0.2	54.0	2.7	174.5	10.8	893.2	31.4	163.9	4.9	61.9	3.1	1,955.4
250-1000	1,017.3	55.3	2,440.3	56.2	1,279.6	94.6	1,351.9	75.1	283.5	17.5	520.1	26.0	625.3	39.0	1,933.8	67.9	2,697.9	81.4	1,059.4	53.8	13,209.1
> 1000	401.9	21.9	1,729.7	39.8	74.4	5.3	443.8	24.3	1,331.5	82.3	1,424.9	71.3	805.4	50.2	20.4	0.7	452.4	13.7	848.1	43.1	7,532.5
Total	1,839.1	100.0	4,341.6	100.0	1,354.8	100.0	1,806.0	100.0	1,620.3	100.0	1,999.0	100.0	1,605.2	100.0	2,847.4	100.0	3,314.2	100.0	1,969.4	100.0	22,697.0



State Partnership Programn

DISTRICT – JODHPUR

GROUND WATER FLUORIDE DISTRIBUTION

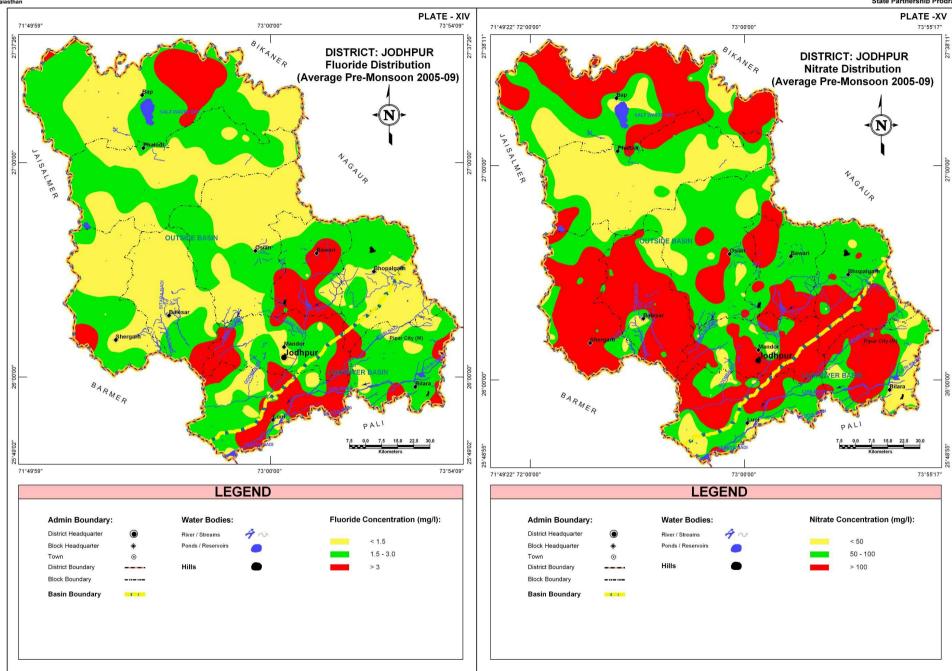
The concentration of fluoride in ground water varies from nil to 15 mg/l in the district. It is seen that higher concentration is observed in major parts of the Bap, Luni and Bawari blocks and contiguous areas in Mandor, and Shergarh blocks and towards Jaisalmer in Shergarh block. Central part constituted by whole of Phalodi, major parts of Osian and Balesar blocks are largely free from high fluoride concentration.

									Block wis	se area o	coverage	(sq km)									
Fluoride concentration Range (mg/l)	Bale	sar	Ba	р	Baw	ari	Bhopa	lgarh	Bila	ra	Lui	ni	Man	dor	Osia	an	Phal	odi	Sherg	arh	Total Area
Kange (mg/n)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq km)
< 1.5	1,099.0	59.8	1,343.1	30.9	53.0	3.7	550.7	30.6	102.5	6.3	416.3	20.8	378.8	23.6	1,527.0	53.6	858.5	25.8	754.7	38.3	7,083.6
1.5-3.0	546.7	29.7	2,012.8	46.4	794.6	58.8	1,094.3	60.8	1,033.6	63.9	882.3	44.2	587.6	36.6	1,259.7	44.3	2,288.2	69.1	742.9	37.7	11,242.7
> 3.0	193.4	10.5	985.7	22.7	507.2	37.5	161.0	8.6	484.2	29.8	700.4	35.0	638.8	39.8	60.7	2.1	167.5	5.1	471.8	24.0	4,370.7
Total	1,839.1	100.0	4,341.6	100.0	1,354.8	100.0	1,806.0	100.0	1,620.3	100.0	1,999.0	100.0	1,605.2	100.0	2,847.4	100.0	3,314.2	100.0	1,969.4	100.0	22,697.0

Table: Block wise area of Fluoride distribution

GROUND WATER NITRATE DISTRIBUTION

High nitrate concentration in ground water renders it unsuitable for agriculture purposes. Plate – XV shows distribution of Nitrate in ground water of Jodhpur district. Low nitrate concentration (<50 mg/l) area is shown in yellow color and occupies approximately 20% of the district which is suitable for agriculture purpose. Such low Nitrate areas are largely present in the northern part of the district. The areas with moderately high nitrate concentration (50-100 mg/l) are shown in green color occupying approximately 37% of the district area. Remaining 43% of the district viz. eastern part of Bap block, Southern part of Shergarh block, Eastern parts of Mandor, Bopalgarh and Bilara blocks is covered with high nitrate concentration (>100 mg/l) which is shown in red colored patches is spread over the district as patches leaving the ground water unsuitable for agriculture purpose.


Table: Block wise area of Nitra	te distribution
---------------------------------	-----------------

Nitrate concentration									Block wis	se area o	overage	(sq km)									
range (mg/l)	Bale	sar	Ba	р	Baw	ari	Bhopa	lgarh	Bila	ira	Lu	ni	Man	dor	Osi	an	Phal	odi	Sher	garh	Total Area
	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq km)
< 50	139.8	7.6	712.9	16.4	0.2	0.0	108.3	6.0	424.4	26.2	293.1	14.7	107.5	6.7	531.0	18.7	1997.1	60.3	100.4	5.1	4414.7
50-100	250.7	13.6	1378.2	31.7	792.9	58.5	986.6	54.5	469.5	29.0	877.7	43.9	473.1	29.5	1833.0	64.4	948.6	28.6	471.7	24.0	8482.0
> 100	1448.6	78.8	2250.5	51.8	561.7	41.5	711.1	39.5	726.4	44.8	828.2	41.4	1024.6	63.8	483.4	17.0	368.5	11.1	1397.3	71.0	9800.3
Total	1839.1	100.0	4341.6	100.0	1354.8	100.0	1806.0	100.0	1620.3	100.0	1999.0	100.0	1605.2	100.0	2847.4	100.0	3314.2	100.0	1969.4	100.0	22697.0

The entire area of the district is underlined by the hard rocks at different depths. From hydrogeologic perspective, the beginning of massive bedrock has been considered for defining top of bedrock surface. The major rock types occurring in the district are Sandstone, Limestone, Schist, Phyllite, Rhyolite and Granite. These rocks are overlain by alluvial deposits of sand, clay, silt and admixture of these in different proportions and thicknesses. On perusal of the map of depth to bed rock in meters below ground level it can be interpreted that the bedrock occurs at shallow depths in southern parts whereas further northwards, the depth to bedrock increases reaching to about 240m bgl. The central part (in Osian, Bewari and Balesar blocks), southern part (in Luni, Mandor and Bilara blocks) and western part in Shergarh block of the district varies with a thickness range of 20 – 80 meter. Small patches of depth less than 20m bgl are found in Bewari and Balesar blocks.

Dauth to be due de									Block wi	se area	coverage (sq km)									
Depth to bedrock range (m bgl)	Bale	sar	Ba	р	Baw	ari	Bhopa	lgarh	Bila	ra	Lui	ni	Man	dor	Osia	an	Phal	odi	Sherg	garh	Total Area
range (in bgi)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq km)
< 20	-	-	-	-	8.3	0.6	2.1	0.1	-	-	-	-	-	-	-	-	-	-	-	-	10.4
20-40	117.9	6.4	-	-	20.7	1.5	13.4	0.4	-	-	-	-	-	-	-	-	-	-	-	-	152.0
40-60	465.3	25.3	-	-	96.5	7.1	63.7	3.5	108.8	6.7	488.0	24.4	48.0	3.0	65.8	2.3	-	-	61.9	3.1	1,398.0
60-80	980.3	53.3	-	-	934.2	69.1	784.7	43.6	984.5	60.7	620.1	31.0	622.0	38.7	697.9	24.5	694.5	21.0	1,340.6	68.1	7,658.8
80-100	198.3	10.8	54.1	1.2	208.3	15.4	894.6	49.7	527.0	32.6	890.9	44.6	916.0	57.1	1,304.9	45.8	806.3	24.3	566.9	28.8	6,367.3
100-120	77.3	4.2	121.3	2.8	43.0	3.0	44.3	2.5	-	-	-	-	19.2	1.2	376.6	13.3	828.2	25.0	-	-	1,509.9
120-140	-	-	528.0	12.2	18.6	1.4	3.1	0.2	-	-	-	-	-	-	214.4	7.5	611.8	18.5	-	-	1,375.9
140-160	-	-	1,055.5	24.3	12.8	1.0	0.1	-	-	-	-	-	-	-	113.8	4.0	240.1	7.3	-	-	1,422.3
160-180	-	-	941.6	21.7	8.5	0.6	-	-	-	-	-	-	-	-	54.3	1.9	82.2	2.5	-	-	1,086.6
180-200	-	-	881.1	20.3	3.9	0.3	-	-	-	-	-	-	-	-	17.5	0.6	25.9	0.6	-	-	928.4
200-220	-	-	543.0	12.5	-	-	-	-	-	-	-	-	-	-	2.2	0.1	21.6	0.7	-	-	566.8
220-240	-	-	217.0	5.0	-	-	-	-	-	-	-	-	-	-	-	-	3.6	0.1	-	-	220.6
Total	1,839.1	100.0	4,341.6	100.0	1,354.8	100.0	1,806.0	100.0	1,620.3	100.0	1,999.0	100.0	1,605.2	100.0	2,847.4	100.0	3,314.2	100.0	1,969.4	100.0	22,697.0

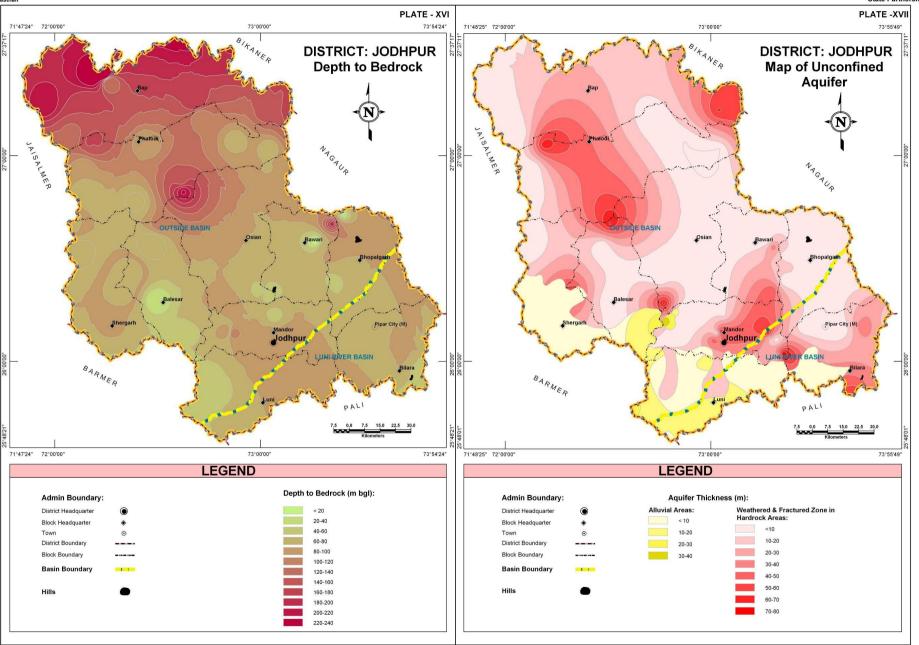
UNCONFINED AQUIFER

Alluvial areas

Aquifer in alluvial material is formed in southern part of the district largely around Luni River, with thickness varying from less than 10 meter and reaching upto 40 meter. Most part of Luni block has unconfined aquifer formed in alluvial material with thickness from 10 to 20 meter and reaching a maximum of 30m in the southwest corner of the block. In southern part of Shergarh block also there is good thickness of alluvial aquifer. Small patches high thicknesses are also found in Balesar and Bilara blocks.

Unconfined aquifer				Block v	vise area	coverage	(sq km)				Total Area
Thickness (m)	Balesar	Вар	Bawari	Bhopalgarh	Bilara	Luni	Mandor	Osian	Phalodi	Shergarh	(sq km)
< 10	95.4	-	-	-	305.6	964.6	65.4	-	-	1,019.2	2,450.2
10-20	244.6	-	-	-	-	656.6	50.5	-	-	-	951.7
20-30	41	-	-	-	-	25.9	28.7	-	-	-	95.6
> 30	1.5	-	-	-	-	-	11.8	-	-	-	13.3
Total	382.5	-	-	-	305.6	1,647.1	156.4	-	-	1,019.2	3,510.8

Hardrock areas

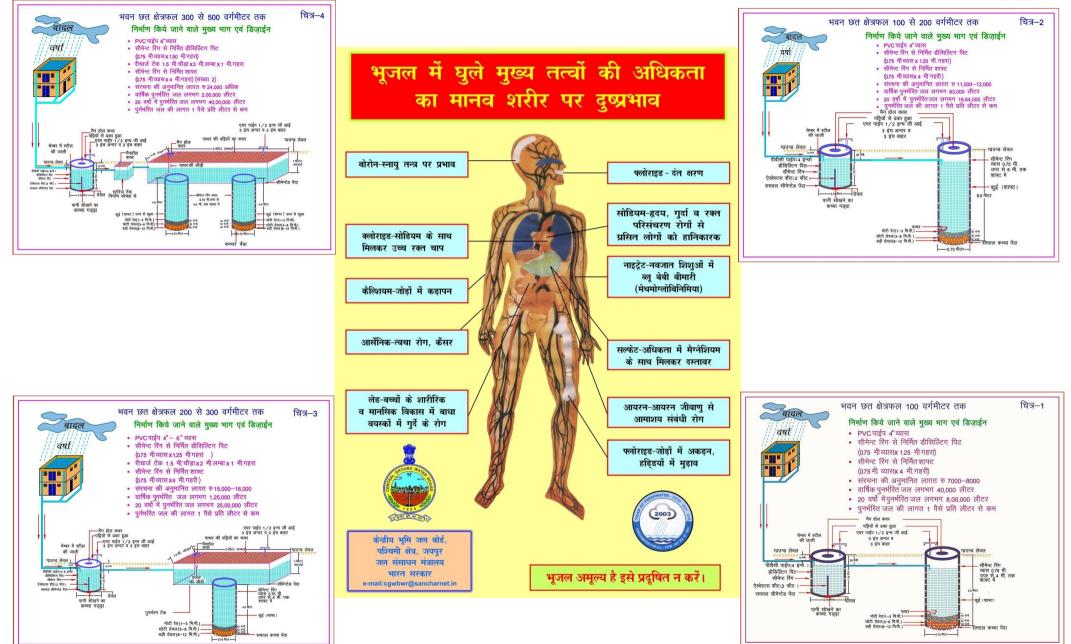

Weathered, fractured and jointed rock formations form the phreatic aquifer in the areas where hard rocks are exposed or occur at shallow depths. Such zone ranges in thickness from less than 10m to 80m throughout the district except in the southern part. These high thickness zones occur in the form of isolated patches only, whereas the general thickness in the district is less than 40m. These formations constitute very good aquifers in the eastern part of Phalodi block and in southern part of Mandor and Bilara blocks reaching a thickness of more than 40 meters.

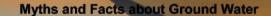
Unconfined				Block wi	ise area co	verage (sq km)				Total
aquifer Thickness (m)	Balesar	Вар	Bawari	Bhopalgarh	Bilara	Luni	Mandor	Osian	Phalodi	Shergarh	Area (sq km)
<10	582.1	886.8	754.5	1,443.30	289.6	0.6	397.9	1,842.00	1,053.60	240.7	7,491.1
10-20	429.7	1,556.30	249.1	245.3	206.6	325.9	199.1	488.9	483.4	317.6	4,501.9
20-30	183.7	945.5	194.7	101.7	465.9	14.9	193.5	244.4	400.6	258.4	3,003.3
30-40	121.8	431.3	91.4	15.7	209.8	4.9	264.5	116.6	510.8	118.2	1,885.0
40-50	77.6	245.6	65.1	-	91	3.5	300.8	83.5	637.5	10.5	1,515.1
50-60	38.6	273.3	-	-	47.2	2.1	74.3	56.5	184.7	4.8	681.5
60-70	22.3	2.8	-	-	4.6	0	14.1	14.4	43.6	-	101.8
> 70	0.8	-	-	-	-	-	4.6	1.1	-	-	6.5
Total	1,456.6	4,341.6	1,354.8	1,806.0	1,314.7	351.9	1,448.8	2,847.4	3,314.2	950.2	19,186.2

Glossary of terms

S. No.	Technical Terms	Definition
1	AQUIFER	A saturated geological formation which has good permeability to
		supply sufficient quantity of water to a Tube well, well or spring.
2	ARID CLIMATE	Climate characterized by high evaporation and low precipitation.
3	ARTIFICIAL RECHARGE	Addition of water to a ground water reservoir by man-made activity
4	CLIMATE	The sum total of all atmospheric or meteorological influences principally temperature, moisture, wind, pressure and evaporation of a region.
5	CONFINED AQUIFER	A water bearing strata having confined impermeable overburden. In this aquifer, water level represents the piezometric head.
6	CONTAMINATION	Introduction of undesirable substance, normally not found in water, which renders the water unfit for its intended use.
7	DRAWDOWN	The drawdown is the depth by which water level is lowered.
8	FRESH WATER	Water suitable for drinking purpose.
9	GROUND WATER	Water found below the land surface.
10	GROUND WATER BASIN	A hydro-geologic unit containing one large aquifer or several connected and interrelated aquifers.
11	GROUND WATER RECHARGE	The natural infiltration of surface water into the ground.
12	HARD WATER	The water which does not produce sufficient foam with soap.
13	HYDRAULIC CONDUCTIVITY	A constant that serves as a measure of permeability of porous medium.
14	HYDROGEOLOGY	The science related with the ground water.
15	HUMID CLIMATE	The area having high moisture content.
16	ISOHYET	A line of equal amount of rainfall.
17	METEOROLOGY	Science of the atmosphere.
18	PERCOLATION	It is flow through a porous substance.
19	PERMEABILITY	The property or capacity of a soil or rock for transmitting water.
20	рН	Value of hydrogen-ion concentration in water. Used as an indicator of acidity (pH < 7) or alkalinity (pH > 7).
21	PIEZOMETRIC HEAD	Elevation to which water will rise in a piezometers.
22	RECHARGE	It is a natural or artificial process by which water is added from outside to the aguifer.
23	SAFE YIELD	Amount of water which can be extracted from ground water without producing undesirable effect.
24	SALINITY	Concentration of dissolved salts.
25	SEMI-ARID	An area is considered semiarid having annual rainfall between 10-20 inches.
26	SEMI-CONFINED AQUIFER	Aquifer overlain and/or underlain by a relatively thin semi-pervious layer.
27	SPECIFIC YIELD	Quantity of water which is released by a formation after it's complete saturation.
28	TOTAL DISSOLVED SOLIDS	Total weight of dissolved mineral constituents in water per unit volume (or weight) of water in the sample.

TRANSMISSIBILITY It is defined as the rate of flow through an aquifer of unit width and total saturation depth under unit hydraulic gradient. It is equal to product of full saturation depth of aquifer and its coefficient of permeability. 30 UNCONFINED AQUIFER A water bearing formation having permeable overburden. The water table forms the upper boundary of the aquifer. 31 UNSATURATED ZONE A water bearing formation having permeable overburden. The water table forms the upper boundary of the aquifer. 32 WATER CONSERVATION Optimal use and proper storage of water. 33 WATER RESOURCES Availability of surface and ground water. 34 WATER RESOURCES Planned development, distribution and use of water resources. 35 WATER TABLE Water table forms the upper surface of the zone of saturation at atmospheric pressure. 36 ZONE OF SATURATION The ground in which all pores are completely filled with water. 36 ZONE OF SATURATION The ground in which all pores are completely filled with water. 37 ELECTRICAL CONDUCTIVITY A Vertical Projection showing sub-surface formations encountered in a specific plane. 38 3-D PICTURE A Structure showing all three dimensions i.e. length, width and depth. 40 GWD Ground Water Department	S. No.	Technical Terms	Definition
29 TRANSMISSIBILITY total saturation depth under unit hydraulic gradient. It is equal to product of full saturation depth of aquifer and its coefficient of permeability. 30 UNCONFINED AQUIFER A water bearing formation having permeable overburden. The water table forms the upper boundary of the aquifer. 31 UNSATURATED ZONE The zone below the land surface in which pore space contains both water and air. 32 WATER CONSERVATION Optimal use and proper storage of water. 33 WATER RESOURCES Planned development, distribution and use of saturation at atmospheric pressure. 34 WATER RESOURCES Planned development, distribution and use of saturation at atmospheric pressure. 35 WATER TABLE Water table is the upper surface of the zone of saturation at atmospheric pressure. 37 ELECTRICAL Flow of free ions in the water at 25C mu/cm. 38 CROSS SECTION A Vertical Projection showing sub-surface formations encountered in a specific plane. 39 3-D PICTURE A structure showing all three dimensions i.e. length, width and depth. 41 CGWB Central Ground Water Department 42 CGWA Central Ground Water Department 43 SWRPD State Water Resources Planning Department 44 EU-SPP <	5.110.		
30 UNCONFINED AQUIFER A water bearing formation having permeable overburden. The water table forms the upper boundary of the aquifer. 31 UNSATURATED ZONE The zone below the land surface in which pore space contains both water and air. 32 WATER CONSERVATION Optimal use and proper storage of water. 33 WATER RESOURCES Availability of surface and ground water. 34 WATER RESOURCES Planned development, distribution and use of water resources. 35 WATER TABLE Water table is the upper surface of the zone of saturation at atmospheric pressure. 36 ZONE OF SATURATION The ground in which all pores are completely filled with water. 37 CONDUCTIVITY Flow of free ions in the water at 25C mu/cm. 38 CROSS SECTION A Vertical Projection showing sub-surface formations encountered in a specific plane. 39 3-D PICTURE A structure showing all three dimensions i.e. length, width and depth. 40 GWD Ground Water Department 41 CGWB Central Ground Water Authority 43 SWRPD State Water Resources Planning Department 44 EU-SPP Details of drainage lines and physical features of land surface on a map.	29	TRANSMISSIBILITY	total saturation depth under unit hydraulic gradient. It is equal to product of full saturation depth of aquifer and its coefficient of
31UNSATURATED ZONEwater and air.32WATER CONSERVATIONOptimal use and proper storage of water.33WATER RESOURCESAvailability of surface and ground water.34WATER RESOURCESPlanned development, distribution and use of water resources.35WATER TABLEWater table is the upper surface of the zone of saturation at atmospheric pressure.36ZONE OF SATURATIONThe ground in which all pores are completely filled with water.37ELECTRICAL CONDUCTIVITYFlow of free ions in the water at 25C mu/cm.38CROSS SECTIONA Vertical Projection showing sub-surface formations encountered in a specific plane.393-D PICTUREA structure showing all three dimensions i.e. length, width and depth.40GWDGround Water Department41CGWBCentral Ground Water Authority43SWRPDState Water Resources Planning Department44EU-SPPEuropean Union State Partnership Programme45TOPOGRAPHYDetails of drainage lines and physical features of land surface on a map.46GEOLOGYThe description and interpretation of land forms.49PRE MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer after Monsoon (carried out between 15th May to 15th June)50PIEZOMETERA non-pumping small diameter bore hole used for monitoring of static water level.51GROUND WATER FLUCTUATIONChange in static water level below ground level.52WATER TABLEThe static water level found in unconfine	30	UNCONFINED AQUIFER	A water bearing formation having permeable overburden. The
33WATER RESOURCESAvailability of surface and ground water.34WATER RESOURCES MANAGEMENTPlanned development, distribution and use of water resources.35WATER TABLEPlanned development, distribution and use of saturation at atmospheric pressure.36ZONE OF SATURATIONThe ground in which all pores are completely filled with water.37ELECTRICAL CONDUCTIVITYFlow of free ions in the water at 25C mu/cm.38CROSS SECTIONA Vertical Projection showing sub-surface formations encountered in a specific plane.393-D PICTUREA structure showing all three dimensions i.e. length, width and depth.40GWDGround Water Department41CGWACentral Ground Water Board42CGWACentral Ground Water Board44EU-SPPEuropean Union State Partnership Programme45TOPOGRAPHY map.Details of drainage lines and physical features of land surface on a map.48PRE MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer before Monsoon (carried out between 15th May to 15th June)49POST-MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer after Monsoon (carried out between 15th October to 15th November)50PIEZOMETER FLUCTUATIONA non-pumping small diameter bore hole used for monitoring of static water level.51GROUND WATER FLUCTUATIONChange in static water level below ground level.52WATER TABLEThe static water level found in unconfined aquifer.53D	31	UNSATURATED ZONE	
34 WATER RESOURCES MANAGEMENT Planned development, distribution and use of water resources. 35 WATER TABLE Water table is the upper surface of the zone of saturation at atmospheric pressure. 36 ZONE OF SATURATION The ground in which all pores are completely filled with water. 37 ELECTRICAL CONDUCTIVITY Flow of free ions in the water at 25C mu/cm. 38 CROSS SECTION A Vertical Projection showing sub-surface formations encountered in a specific plane. 39 3-D PICTURE A structure showing all three dimensions i.e. length, width and depth. 40 GWD Ground Water Department 41 CGWB Central Ground Water Board 42 CGWA Central Ground Water Authority 43 SWRPD State Water Resources Planning Department 44 EU-SPP European Union State Partnership Programme 45 TOPOGRAPHY Details of drainage lines and physical features of land surface on a map. 46 GEOLOGY The science related with the Earth. 47 GEOMORPHOLOGY The description and interpretation of land forms. 48 PRE MONSOON SURVEY Monitoring of Ground Water level from	32	WATER CONSERVATION	Optimal use and proper storage of water.
34MANAGEMENT35WATER TABLEWater table is the upper surface of the zone of saturation at atmospheric pressure.36ZONE OF SATURATIONThe ground in which all pores are completely filled with water.37ELECTRICAL CONDUCTIVITYFlow of free ions in the water at 25C mu/cm.38CROSS SECTIONA Vertical Projection showing sub-surface formations encountered in a specific plane.393-D PICTUREA Structure showing all three dimensions i.e. length, width and depth.40GWDGround Water Department41CGWBCentral Ground Water Board42CGWACentral Ground Water Authority43SWRPDState Water Resources Planning Department44EU-SPPEuropean Union State Partnership Programme45TOPOGRAPHYDetails of drainage lines and physical features of land surface on a map.48PRE MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer before Monsoon (carried out between 15th May to 15th June)49POST-MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer after Monsoon (carried out between 15th October to 15th November)50PIEZOMETERA non-pumping small diameter bore hole used for monitoring of static water level.51GROUND WATER FLUCTUATIONChange in static water level found in unconfined aquifer.53DEPTH OF BED ROCKHard & compact rock encountered below land Surface.54G.W. MONITORING STATIONDug wells selected on grid basis for monitoring of state water level. <td>33</td> <td>WATER RESOURCES</td> <td>Availability of surface and ground water.</td>	33	WATER RESOURCES	Availability of surface and ground water.
35WATER TABLEatmospheric pressure.36ZONE OF SATURATIONThe ground in which all pores are completely filled with water.37ELECTRICAL CONDUCTIVITYFlow of free ions in the water at 25C mu/cm.38CROSS SECTIONA Vertical Projection showing sub-surface formations encountered in a specific plane.393-D PICTUREA structure showing all three dimensions i.e. length, width and depth.40GWDGround Water Department41CGWACentral Ground Water Board42CGWACentral Ground Water Authority43SWRPDState Water Resources Planning Department44EU-SPPEuropean Union State Partnership Programme45TOPOGRAPHYDetails of drainage lines and physical features of land surface on a map.46GEOLOGYThe science related with the Earth.47GEOMORPHOLOGYThe description and interpretation of land forms.48PRE MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer before Monsoon (carried out between 15th May to 15th June)49POST-MONSOON SURVEYA non-pumping small diameter bore hole used for monitoring of static water level.51GROUND WATER FLUCTUATIONChange in static water level below ground level.53DEPTH OF BED ROCKHard & compact rock encountered below land Surface.54GROWNTORING STATIONDug wells selected on grid basis for monitoring of state water level.	34		Planned development, distribution and use of water resources.
37ELECTRICAL CONDUCTIVITYFlow of free ions in the water at 25C mu/cm.38CROSS SECTIONA Vertical Projection showing sub-surface formations encountered in a specific plane.393-D PICTUREA structure showing all three dimensions i.e. length, width and depth.40GWDGround Water Department41CGWBCentral Ground Water Board42CGWACentral Ground Water Authority43SWRPDState Water Resources Planning Department44EU-SPPEuropean Union State Partnership Programme45TOPOGRAPHYDetails of drainage lines and physical features of land surface on a map.46GEOLOGYThe science related with the Earth.47GEOMORPHOLOGYThe description and interpretation of land forms.48PRE MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer before Monsoon (carried out between 15th May to 15th June)49POST-MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer after Monsoon (carried out between 15th October to 15th November)50PIEZOMETERChange in static water level below ground level.51GROUND WATER FLUCTUATIONChange in static water level found in unconfined aquifer.52WATER TABLEThe static water level found in unconfined aquifer.53DEPTH OF BED ROCKHard & compact rock encountered below land Surface.54G.W. MONITORING STATIONDug wells selected on grid basis for monitoring of state water level.	35	WATER TABLE	
37CONDUCTIVITYA Vertical Projection showing sub-surface formations encountered in a specific plane.38CROSS SECTIONA Vertical Projection showing sub-surface formations encountered in a specific plane.393-D PICTUREA structure showing all three dimensions i.e. length, width and depth.40GWDGround Water Department41CGWBCentral Ground Water Board42CGWACentral Ground Water Authority43SWRPDState Water Resources Planning Department44EU-SPPEuropean Union State Partnership Programme45TOPOGRAPHYDetails of drainage lines and physical features of land surface on a map.46GEOLOGYThe science related with the Earth.47GEOMORPHOLOGYThe description and interpretation of land forms.48PRE MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer before Monsoon (carried out between 15th May to 15th June)49POST-MONSOON SURVEYA non-pumping small diameter bore hole used for monitoring of static water level.50PIEZOMETERA non-pumping small diameter bore hole used for monitoring of static water level.51GROUND WATER FLUCTUATIONChange in static water level found in unconfined aquifer.53DEPTH OF BED ROCKHard & compact rock encountered below land Surface.54G.W. MONITORING STATIONDug wells selected on grid basis for monitoring of state water level.	36	ZONE OF SATURATION	The ground in which all pores are completely filled with water.
38CROSS SECTIONa specific plane.393-D PICTUREA structure showing all three dimensions i.e. length, width and depth.40GWDGround Water Department41CGWBCentral Ground Water Board42CGWACentral Ground Water Authority43SWRPDState Water Resources Planning Department44EU-SPPEuropean Union State Partnership Programme45TOPOGRAPHYDetails of drainage lines and physical features of land surface on a map.46GEOLOGYThe science related with the Earth.47GEOMORPHOLOGYThe description and interpretation of land forms.48PRE MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer before Monsoon (carried out between 15th May to 15th June)49POST-MONSOON SURVEYA non-pumping small diameter bore hole used for monitoring of static water level.50PIEZOMETER FLUCTUATIONA non-pumping small diameter bore hole used for monitoring of static water level.51GROUND WATER FLUCTUATIONChange in static water level below ground level.52WATER TABLE FLUCTUATIONThe static water level found in unconfined aquifer.53DEPTH OF BED ROCKHard & compact rock encountered below land Surface.54G.W. MONITORING STATIONDug wells selected on grid basis for monitoring of state water level.	37		Flow of free ions in the water at 25C mu/cm.
393-D PICTOREdepth.40GWDGround Water Department41CGWBCentral Ground Water Board42CGWACentral Ground Water Authority43SWRPDState Water Resources Planning Department44EU-SPPEuropean Union State Partnership Programme45TOPOGRAPHYDetails of drainage lines and physical features of land surface on a map.46GEOLOGYThe science related with the Earth.47GEOMORPHOLOGYThe description and interpretation of land forms.48PRE MONSOON SURVEYDKW/Piezometer before Monsoon (carried out between 15th May to 15th June)49POST-MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer after Monsoon (carried out between 15th October to 15th November)50PIEZOMETERA non-pumping small diameter bore hole used for monitoring of static water level.51GROUND WATER FLUCTUATIONChange in static water level below ground level.52WATER TABLEThe static water level found in unconfined aquifer.53DEPTH OF BED ROCKHard & compact rock encountered below land Surface.54G.W. MONITORING STATIONDug wells selected on grid basis for monitoring of state water level.	38	CROSS SECTION	
41CGWBCentral Ground Water Board42CGWACentral Ground Water Authority43SWRPDState Water Resources Planning Department44EU-SPPEuropean Union State Partnership Programme45TOPOGRAPHYDetails of drainage lines and physical features of land surface on a map.46GEOLOGYThe science related with the Earth.47GEOMORPHOLOGYThe description and interpretation of land forms.48PRE MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer before Monsoon (carried out between 15th May to 15th June)49POST-MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer after Monsoon (carried out between 15th October to 15th November)50PIEZOMETERA non-pumping small diameter bore hole used for monitoring of static water level.51GROUND WATER FLUCTUATIONChange in static water level below ground level.52WATER TABLEThe static water level found in unconfined aquifer.53DEPTH OF BED ROCKHard & compact rock encountered below land Surface.54G.W. MONITORING STATIONDug wells selected on grid basis for monitoring of state water level.	39	3-D PICTURE	
41CGWBCentral Ground Water Board42CGWACentral Ground Water Authority43SWRPDState Water Resources Planning Department44EU-SPPEuropean Union State Partnership Programme45TOPOGRAPHYDetails of drainage lines and physical features of land surface on a map.46GEOLOGYThe science related with the Earth.47GEOMORPHOLOGYThe description and interpretation of land forms.48PRE MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer before Monsoon (carried out between 15th May to 15th June)49POST-MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer after Monsoon (carried out between 15th October to 15th November)50PIEZOMETERA non-pumping small diameter bore hole used for monitoring of static water level.51GROUND WATER FLUCTUATIONChange in static water level below ground level.52WATER TABLEThe static water level found in unconfined aquifer.53DEPTH OF BED ROCKHard & compact rock encountered below land Surface.54G.W. MONITORING STATIONDug wells selected on grid basis for monitoring of state water level.	40	GWD	
43SWRPDState Water Resources Planning Department44EU-SPPEuropean Union State Partnership Programme45TOPOGRAPHYDetails of drainage lines and physical features of land surface on a map.46GEOLOGYThe science related with the Earth.47GEOMORPHOLOGYThe description and interpretation of land forms.48PRE MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer before Monsoon (carried out between 15th May to 15th June)49POST-MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer after Monsoon (carried out between 15th October to 15th November)50PIEZOMETERA non-pumping small diameter bore hole used for monitoring of static water level.51GROUND WATER FLUCTUATIONChange in static water level below ground level.52WATER TABLEThe static water level found in unconfined aquifer.53DEPTH OF BED ROCKHard & compact rock encountered below land Surface.54G.W. MONITORING STATIONDug wells selected on grid basis for monitoring of state water level.	41	CGWB	
43SWRPDState Water Resources Planning Department44EU-SPPEuropean Union State Partnership Programme45TOPOGRAPHYDetails of drainage lines and physical features of land surface on a map.46GEOLOGYThe science related with the Earth.47GEOMORPHOLOGYThe description and interpretation of land forms.48PRE MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer before Monsoon (carried out between 15th May to 15th June)49POST-MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer after Monsoon (carried out between 15th October to 15th November)50PIEZOMETERA non-pumping small diameter bore hole used for monitoring of static water level.51GROUND WATER FLUCTUATIONChange in static water level below ground level.52WATER TABLEThe static water level found in unconfined aquifer.53DEPTH OF BED ROCKHard & compact rock encountered below land Surface.54G.W. MONITORING STATIONDug wells selected on grid basis for monitoring of state water level.	42	CGWA	Central Ground Water Authority
44EU-SPPEuropean Union State Partnership Programme45TOPOGRAPHYDetails of drainage lines and physical features of land surface on a map.46GEOLOGYThe science related with the Earth.47GEOMORPHOLOGYThe description and interpretation of land forms.48PRE MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer before Monsoon (carried out between 15th May to 15th June)49POST-MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer after Monsoon (carried out between 15th October to 15th November)50PIEZOMETERA non-pumping small diameter bore hole used for monitoring of static water level.51GROUND WATER FLUCTUATIONChange in static water level found in unconfined aquifer.53DEPTH OF BED ROCKHard & compact rock encountered below land Surface.54G.W. MONITORING STATIONDug wells selected on grid basis for monitoring of state water level.	43	SWRPD	· · · · · · · · · · · · · · · · · · ·
45IOPOGRAPHYmap.46GEOLOGYThe science related with the Earth.47GEOMORPHOLOGYThe description and interpretation of land forms.48PRE MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer before Monsoon (carried out between 15th May to 15th June)49POST-MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer after Monsoon (carried out between 15th October to 15th November)50PIEZOMETERA non-pumping small diameter bore hole used for monitoring of static water level.51GROUND WATER FLUCTUATIONChange in static water level below ground level.52WATER TABLEThe static water level found in unconfined aquifer.53DEPTH OF BED ROCKHard & compact rock encountered below land Surface.54G.W. MONITORING STATIONDug wells selected on grid basis for monitoring of state water level.	44	EU-SPP	European Union State Partnership Programme
47GEOMORPHOLOGYThe description and interpretation of land forms.48PRE MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer before Monsoon (carried out between 15th May to 15th June)49POST-MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer after Monsoon (carried out between 15th October to 15th November)50PIEZOMETERA non-pumping small diameter bore hole used for monitoring of static water level.51GROUND WATER FLUCTUATIONChange in static water level below ground level.52WATER TABLEThe static water level found in unconfined aquifer.53DEPTH OF BED ROCKHard & compact rock encountered below land Surface.54G.W. MONITORING STATIONDug wells selected on grid basis for monitoring of state water level.	45	TOPOGRAPHY	o 1 <i>i i</i>
48PRE MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer before Monsoon (carried out between 15th May to 15th June)49POST-MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer after Monsoon (carried out between 15th October to 15th November)50PIEZOMETERA non-pumping small diameter bore hole used for monitoring of static water level.51GROUND WATER FLUCTUATIONChange in static water level below ground level.52WATER TABLEThe static water level found in unconfined aquifer.53DEPTH OF BED ROCKHard & compact rock encountered below land Surface.54G.W. MONITORING STATIONDug wells selected on grid basis for monitoring of state water level.	46	GEOLOGY	The science related with the Earth.
48PRE MONSOON SURVEYDKW/Piezometer before Monsoon (carried out between 15th May to 15th June)49POST-MONSOON SURVEYMonitoring of Ground Water level from the selected DKW/Piezometer after Monsoon (carried out between 15th October to 15th November)50PIEZOMETERA non-pumping small diameter bore hole used for monitoring of static water level.51GROUND WATER FLUCTUATIONChange in static water level below ground level.52WATER TABLEThe static water level found in unconfined aquifer.53DEPTH OF BED ROCKHard & compact rock encountered below land Surface.54G.W. MONITORING STATIONDug wells selected on grid basis for monitoring of state water level.	47	GEOMORPHOLOGY	The description and interpretation of land forms.
49 POST-MONSOON SURVEY DKW/Piezometer after Monsoon (carried out between 15th October to 15th November) 50 PIEZOMETER A non-pumping small diameter bore hole used for monitoring of static water level. 51 GROUND WATER FLUCTUATION Change in static water level below ground level. 52 WATER TABLE The static water level found in unconfined aquifer. 53 DEPTH OF BED ROCK Hard & compact rock encountered below land Surface. 54 G.W. MONITORING STATION Dug wells selected on grid basis for monitoring of state water level.	48	PRE MONSOON SURVEY	DKW/Piezometer before Monsoon (carried out between 15th May to 15th June)
50 PIEZOMETER static water level. 51 GROUND WATER FLUCTUATION Change in static water level below ground level. 52 WATER TABLE The static water level found in unconfined aquifer. 53 DEPTH OF BED ROCK Hard & compact rock encountered below land Surface. 54 G.W. MONITORING STATION Dug wells selected on grid basis for monitoring of state water level.	49		DKW/Piezometer after Monsoon (carried out between 15th
51 FLUCTUATION 52 WATER TABLE The static water level found in unconfined aquifer. 53 DEPTH OF BED ROCK Hard & compact rock encountered below land Surface. 54 G.W. MONITORING STATION Dug wells selected on grid basis for monitoring of state water level.	50	PIEZOMETER	
53 DEPTH OF BED ROCK Hard & compact rock encountered below land Surface. 54 G.W. MONITORING STATION Dug wells selected on grid basis for monitoring of state water level.	51		Change in static water level below ground level.
54 G.W. MONITORING STATION Dug wells selected on grid basis for monitoring of state water level.	52	WATER TABLE	The static water level found in unconfined aquifer.
54 STATION	53	DEPTH OF BED ROCK	Hard & compact rock encountered below land Surface.
55 EOLIAN DEPOSITS Wind-blown sand deposits	54		Dug wells selected on grid basis for monitoring of state water level.
	55	EOLIAN DEPOSITS	Wind-blown sand deposits




(Contd...)

A A A KAR KAR AN AN

S No	Myths	Facts
1	What is Ground Water an underground lake a net work of underground rivers a bowl filled with water 	Water which occurs below the land in geological formations/rocks is Ground water
2	Ground Water occurs everywhere beneath the Land Surface	Not really, it depends on the nature of rock formation
3	There is a relationship between ground water and surface water	Not all the places. Near streams/rivers there is relation
4	Groundwater is not renewable resource	It is renewable source and every year it is being recharged through rain/applied irrigation etc
5	Ground water is unlimited and deeper you drill more discharge	It is limited to annual recharge from rain/applied irrigation. The discharge may not increase if you go deeper
6	Ground Water moves rapidly	The movement of ground water is very slow
7	Ground water pumped from wells is thousands of years old	Generally the ground water being tapped through wells is a few years old
8	If water taste good—it is safe to drink	It may have other chemicals e.g. fluoride, nitrates etc which are harmful
9	Water from free flowing tube wells is very pure	This water can also be contaminated so test before use
10	If I recharge my TW/DW/HP it will not benefit me	It will also benefit you and also adjoing wells
11	There is no static ground water resources in Rajasthan	Rajasthan is also having Static GW resources, and being tapped in most of areas as GW annual withdrawal is more than annual recharge
12	I cannot meet annual cooking and drinking water requirement by rain water harvesting	The water requirement for drinking and cooking is only 8 lit/day. You can harvest this water for family of 5 persons from roof top or paved area of 75 Sq m to meet annual requirement
13	You can increase ground water recharge	This can be done by harvesting the rain water and storing in sub surface reservoir (GW) by constructing the recharge structures
14	You cannot use abandoned TW/HP/DW for ground water recharge	These should be used as recharge structures as harvested rain water is directly put into GW reservoir
15	Putting waste near HP/TW will not cause any problem	Such actions will pollute wells and water

11

-

Rolta India Limited

Central & Registered Office Rolta Tower A, Rolta Technology Park, MIDC, Andheri (East), Mumbai - 400 093 Tel : +91 (22) 2926 6666, 3087 6543 Fax : +91 (22) 2836 5992 Email : indsales@rolta.com

www.rolta.com

.