

Hydrogeological Atlas of Rajasthan

Sultanpur

Sangod

2013

Kota

Khairabad

Itawa

10.0

0 1

Hydrogeological Atlas of Rajasthan

Itawa

Sultanpur

Sangod

Ladpura

Khairabad

List of Plates	Title	Page No.
Plate I	Administrative Map	2
Plate II	Topography	4
Plate III	Rainfall Distribution	4
Plate IV	Geological Map	6
Plate V	Geomorphological Map	6
Plate VI	Aquifer Map	8
Plate VII	Stage of Ground Water Development (Block wise) 2011	8
Plate VIII	Location of Exploratory and Ground Water Monitoring Stations	10
Plate IX	Depth to Water Level (Pre-Monsoon 2010)	10
Plate X	Water Table Elevation (Pre-Monsoon 2010)	12
Plate XI	Water Level Fluctuation (Pre-Post Monsoon 2010)	12
Plate XII	Electrical Conductivity Distribution (Average Pre-Monsoon 2005-09)	14
Plate XIII	Chloride Distribution (Average Pre-Monsoon 2005-09)	14
Plate XIV	Fluoride Distribution (Average Pre-Monsoon 2005-09)	16
Plate XV	Nitrate Distribution (Average Pre-Monsoon 2005-09)	16
Plate XVI	Depth to Bedrock	18
Plate XVII	Map of Unconfined Aquifer	18
	Glossary of terms	19

ADMINISTRATIVE SETUP

Location:

Kota district is located in the southeastern part of Rajasthan. It is bounded in the north by Sawai Madhopur district, in the east by Baran district and the state of Madhya Pradesh, in the south by Jhalawar and Chittaurgarh districts along with state of Madhya Pradesh and finally in the west by Bundi district. It stretches between 24° 32' 02.17" to 25° 51' 19.33" north latitude and 75° 36' 55.19" to 76° 34' 57.10" east longitude covering an approximate area of 5,122.3 sq kms. The whole district is the part of 'Chambal River Basin'.

Administrative Set-up:

C No	Block Nomo	Population	Area	% of District Area	Total Number of		
5. NO.	S. NO. BIOCK Name	(Based on 2001 census)	(sq km)	% OF DISTRICT Area	Towns and Villages		
1	Itawa	1,55,646	906.2	17.7	169		
2	Khairabad	2,28,479	734.6	14.3	166		
3	Ladpura	8,68,213	1,478.2	28.9	185		
4	Sangod	1,65,600	1,095.9	21.4	212		
5	Sultanpur	1,50,587	907.4	17.7	171		
	Total	15,68,525	5,122.3	100.0	903		

Kota district is administratively divided into five blocks. The following table summarizes the basic statistics of the district at block level.

Kota district has 903 towns and villages, of which five are block headquarters as well.

Climate:

Kota district has a semi-arid climate. Summers are long, hot and dry, starting in late March and lasting till the end of June. The monsoon season follows summer with comparatively lower temperatures, but higher humidity and frequent, torrential downpours. The monsoons subside in October and temperatures rise again moderately. The brief but pleasant winter starts in late November and lasts until the last week of February. Temperatures hover between 26.7°C (max) to 12°C (min). The average annual rainfall in the Kota district is 707.7 mm. Most of the rainfall can be attributed to the southwest monsoon which has its beginning around the last week of June and may last till mid-September. Pre-monsoon showers begin towards the middle of June with post-monsoon rains occasionally occurring in October. The winter is largely dry, although some rainfall does occur as a result of the Western Disturbance passing over the region.

DISTRICT – KOTA

TOPOGRAPHY

DISTRICT – KOTA

Major part of the district comes under plain area but hills occupysouthern part trending west to east. Kota is part of Chambal river basin. Chambal is the major river in the district which developed very good drainage system along with tributaries like Sukhal, Andheri, Alnia, Ujar, Parwan and Amajar. The general topographic elevation in the district is between 250 m to 300 m above mean sea level in most of the blocks. Elevation ranges from a minimum of 175.9 m above mean sea level in Itawa block in the northern part of the district to a maximum of 517.5 m amsl in Ladpura in southwestern part of the district.

S. No.	Block Name	Min. Elevation (m amsl)	Max. Elevation (m amsl)
1	Itawa	175.9	257.8
2	Khairabad	296.4	452.9
3	Ladpura	228.0	517.5
4	Sangod	224.9	442.6
5	Sultanpur	193.0	283.6

Table: Block wise minimum and maximum elevation

RAINFALL

Rainfall received in the district is fairly good. The general distribution of rainfall across can be visualized from isohyets presented in the Plate – III where most of the district received rainfall in the range of 600-700 mm in year 2010. The total annual average rainfall is 663.4 mm based on the data of available blocks. Itawa block received highest rainfall (917.6 mm) whereas lowest was in Sangod block (418.4 mm). Maximum average annual rainfall recorded in Itawa block was about 773.6 mm.

Block Name	Minimum Annual Rainfall (mm)	Maximum Annual Rainfall (mm)	Average Annual Rainfall (mm)
Itawa	683.0	917.6	773.6
Khairabad	614.1	845.8	735.1
Ladpura	545.8	696.8	616.6
Sangod	418.4	643.7	538.6
Sultanpur	545.4	738.7	653.1

Table: Block wise annual rainfall statistics (derived from year 2010 meteorological station data)

5.2

52.

ŝ

GEOLOGY

DISTRICT – KOTA

Geologically, most of the parts of Kota district are occupied by Vindhyan Super Group which forms the part of Great Vindhyan basin. The Vindhyan Super Group is divided into Khorip, Kaimur, Rewa and Bhander Groups comprising Sandstones, Shales and Limestone. The Bhander Group comprises almost 70% of the area of the district. The southern part of the district consists of Deccan trap formation within Khairabad block. Rewa and Kaimur Group of rocks occupy small patches in Khairabad, Sangod and Ladpura block.

Super Group	Group	Formation		
	Recent	Alluvium (Sand, silt & clay)		
	Bhander	Shale, Limestone, Sandstone		
Vindbyon	Rewa	Shale, Sandstone		
vinonyan	Kaimur	Sandstone		
	Khorip	Shale		

GEOMORPHOLOGY

Table: Geomorphologic units, their description and distribution

Origin	Landform Unit	Description
	Buried Pediment	Pediment covers essentially with relatively thicker alluvial, colluvial or weathered materials.
Denudational	Pediment	Broad gently sloping rock flooring, erosional surface of low relief between hill and plain,
	reament	comprised of varied lithology, criss-crossed by fractures and faults.
	Alluvial Plain	Mainly undulating landscape formed due to fluvial activity, comprising of gravels, sand, silt and
Fluvial		clay. Terrain mainly undulating, produced by extensive deposition of alluvium.
Pavino		Small, narrow, deep, depression, smaller than gorges, larger than gulley, usually carved by
	Navine	running water.
		Formed over varying lithology with extensive, flat, landscapes, bordered by escarpment on all
Structural	Plateau	sides. Essentially formed horizontally layered rocky marked by extensive flat top and steep
		slopes. It may be criss crossed by lineament.
		Steep sided, relict hills undergone denudation, comprising of varying lithology with joints,
	Denudational	fractures and lineaments.
Hills	Structural Hill	Linear to arcuate hills showing definite trend-lines with varying lithology associated with folding,
	Structural Hill,	faulting etc.
	Linear Riuge	Long narrow low-lying ridge usually barren, having high run off may form over varying lithology
		with controlled strike.

5°52'4

.00.08

52.5

..00.00

25°

48"

4

AQUIFERS

DISTRICT – KOTA

In Kota district, aquifers are formed in both alluvial material and in sedimentary rocks. The alluvium is primarily Younger alluvium occupying about 28% of district area occurring as continuous patch in northern part of the district. Among hard rock aquifers, Sandstone and limestone are most prominent. Sandstones occupy almost half of the district area and form very promising aquifers in southern part of the district. Limestone aquifers hold water in secondary pores and form aquifers in about 22% of the district. Weathered and fractured shale also constitutes aquifers however with very limited spatial extent (about 3%) in eastern part of the district.

Aquifer in Potential Zone	Area (sq km)	% age of district	Description of the unit/Occurrence
Younger Alluvium	1,435.2	28.0	It is largely constituted of Aeolian and Fluvial sand, silt, clay, gravel and pebbles in varying proportions.
Limestone	1,142.3	22.3	In general, it is fine to medium grained, grey, red yellowish, pink or buff in colour.
Sandstone	2,395.5	46.8	Fine to medium grained, red colour and compact and at places.
Shale	149.3	2.9	Grey, light green and purple in colour and mostly splintery in nature.
Total	5,122.3	100.0	

Table: aquifer potentia	I zones their area	a and their descriptio
-------------------------	--------------------	------------------------

STAGE OF GROUND WATER DEVELOPMENT

Ground water resource studies reveal that the of the five blocks within the district, three are in 'Semi critical' category implying that ground water development is already close to 90%. The two other districts (Khairabad and Sangod) are even more stressed as they fall within the 'Over Exploited' category and further development of ground water be avoided.

Categorization on the basis of stage of development of ground water	Block Name			
Semi-Critical	Ladpura, Sultanpur, Itawa			
Over Exploited	Khairabad, Sangod			

Basis for categorization: Ground water development <= 70 – 90% Semi critical and >100% - Over-Exploited.

.60

24

LOCATION OF EXPLORATORY AND GROUND WATER MONITORING WELLS

DISTRICT – KOTA

Kota district has a well distributed network of exploratory wells (81) and ground water monitoring stations (178) in the district owned by RGWD (47 and 160 respectively) and CGWB (34 and 18 respectively). The exploratory wells have formed the basis for delineation of subsurface aquifer distribution scenario in three dimensions. Benchmarking and optimization studies suggest that both the ground water level and quality monitoring network need to be strengthened by adding 17 additional wells to water level monitoring network and just 3 wells to water quality network for optimization of the network.

Block Name	Explo	oratory V	Vells	Ground Water Monitoring Stations			Recommended additional wells for optimization of monitoring network			
	CGWB	RGWD	Total	CGWB	RGWD	Total	Water Level	Water Quality		
Itawa	3	7	10	8	32	40	0	2		
Khairabad	3	9	12	-	32	32	17	0		
Ladpura	7	10	17	5	36	41	0	1		
Sangod	10	13	23	2	31	33	0	0		
Sultanpur	11	8	19	3	29	32	0	0		
Total	34	47	81	18	160	178	17	3		

Table: Block wise count of wells (existing and recommended)

DEPTH TO WATER LEVEL (PRE MONSOON – 2010)

Depth to ground water levels in Kota district can be visualized from Plate – IX. Depth to water level varies from less than 10m below ground level to more than 40mbgl. Central part of the district i.e., Sultanpur-Sangod-Ladpura region, shows deeper water levels even reaching upto>40m bgl. In the northern and western sides, the water level is relatively shallow i.e., less than20m bgl, but in the eastern part, largely in Sangod block, the water level is moderately deeper 20-30m bgl.

Depth to water		Block wise area coverage (sq km) *										
Level(mbgl)	Itawa	Khairabad	Ladpura	Sangod	Sultanpur	(sq km)						
< 10	178.8	22.8	510.6	27.8	463.1	1,203.1						
10-20	540.2	624.0	654.2	356.4	317.6	2,492.4						
20-30	184.6	87.8	228.7	669.1	87.9	1,258.1						
30-40	2.6	-	64.9	40.7	38.5	146.7						
> 40	-	-	19.8	1.8	0.4	22.0						
Total	906.2	734.6	1,478.2	1,095.8	907.5	5,122.3						

* The area covered in the derived maps is less than the total district area since the hills have been excluded from interpolation/contouring.

25°3

25°(

DISTRICT – KOTA

WATER TABLE ELEVATION (PRE MONSOON - 2010)

The regional ground water flow is broadly from west to east and finally to northeast in major part of the district. The general water table elevations are higher in western and southwestern parts of the district were the water table elevation varies from 240 – 320m above mean sea level and reaching to a maximum of about 400m amsl in extreme western part of the district (in Ladpura Block). In the northern part however, the elevation ranges are on the lower side, varying between about 200m (Itawa block) to 260m amsl.

Block Nomo	Block wise area coverage (sq km) per water table elevation range (m)											Total Area	
вюск мате	<200	200-220	220-240	240-260	260-280	280-300	300-320	320-340	340-360	360-380	380-400	>400	(sq km)
Itawa	99.3	560.5	244.9	1.5	-	-	-	-	-	-	-	-	906.2
Khairabad	-	-	-	-	93.0	428.8	196.6	14.2	2.0	-	-	-	734.6
Ladpura	-	-	83.0	246.6	181.5	154.1	186.4	160.0	145.5	153.6	159.1	8.4	1,478.2
Sangod	-	-	50.3	575.4	243.7	122.8	85.2	18.4	-	-	-	-	1,095.8
Sultanpur	-	47.9	747.8	111.8	-	-	-	-	-	-	-	-	907.5
Total	99.3	608.4	1,126.0	935.3	518.2	705.7	468.2	192.6	147.5	153.6	159.1	8.4	5,122.3

WATER LEVEL FLUCTUATION (PRE TO POST MONSOON 2010)

Ground water level fluctuation map (Plate – XI) reveals fall ground water level by 6 m in one area to rise in upto 16m in other areas between pre to post monsoon water levels. The negative fluctuation areas (indicated by pink and red coloured regions) are the areas where overexploitation is taking place and water level in the post monsoon season has actually gone down with respect to pre-monsoon levels. Such ground water depletion areas are located in the northern and northwestern part of the district, largely corresponding to alluvial aquifer areas. Rest of the district has shown a general to significant rise in ground water level as maximum rise of more than 16m is noticed in the central part of Ladpura block.

Block Nama		Block wise area coverage (sq km) per water level fluctuation range (m)												
DIOCK INdille	<-6	-6to-4	-4to-2	-2to0	0to2	2to4	4to6	6to8	8to10	10to12	12to14	14to16	>16	(sq km)
Itawa	-	0.5	30.6	246.2	441.5	147.1	33.9	6.4	-	-	-	-	-	906.2
Khairabad	-	-	2.2	5.1	30.7	53.8	99.9	137.6	122.3	187.9	59.0	34.5	1.6	734.6
Ladpura	-	-	16.5	194.0	266.2	266.6	214.6	189.2	99.9	77.1	86.6	57.5	10.0	1,478.2
Sangod	-	-	7.8	54.3	153.2	296.2	209.8	117.6	117.0	88.5	38.0	10.4	3.0	1,095.8
Sultanpur	2.3	6.4	31.1	282.5	369.5	136.9	49.5	20.0	4.6	2.5	1.4	0.8	-	907.5
Total	2.3	6.9	88.2	782.1	1,261.1	900.6	607.7	470.8	343.8	356.0	185.0	103.2	14.6	5,122.3

Table: Block wise area covered in each water fluctuation zone

76°48'59"

GROUND WATER ELECTRICAL CONDUCTIVITY DISTRIBUTION

DISTRICT – KOTA

The Electrical conductivity (at 25°C) distribution map is presented in Plate – XII. The areas with low EC values in ground water (<2000 μ S/cm) are shown in yellow color and occupies almost 90% of the district area indicating that, by and large the ground water in the whole of the district is suitable for domestic purpose. The areas with moderately high EC values (2000 -4000 μ S/cm) are shown in green color which occupy only about 10% of the district area, largely in the northern part of the district around Sultanpur. An insignificantly small area (just about 0.1 sq km) in Itawa block has high EC values in ground water (>4000 μ S/cm).

Electrical Conductivity Ranges	Block wise area coverage (sq km)										
(μS/cm at 25°C)	lta	wa	Khair	rabad	Ladp	ura	Sang	od	Sulta	npur	(ca km)
(Ave. of years 2005-09)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq kill)
< 2000	683.5	75.4	695.9	94.7	1,473.6	99.7	1,081.7	98.7	687.5	75.8	4,622.2
2000-4000	222.6	24.6	38.7	5.3	4.6	0.3	14.1	1.3	220.0	24.2	500.0
>4000	0.1	-	-	-	-	-	-	-	-	-	0.1
Total	906.2	100.0	734.6	100.0	1,478.2	100.0	1,095.8	100.0	907.5	100.0	5,122.3

Table: Block wise area of Electrical conductivity distribution

GROUND WATER CHLORIDE DISTRIBUTION

Chloride concentration map is presented in Plate – XIII. The yellow colored regions in map are such areas where chloride concentration is low (<250 mg/l) and these occupyabout 93% of the district area and is suitable for domestic purpose. The areas with moderately high chloride concentration (250-1000mg/l) are shown in green color and occupy approximately 7% of the district area, largely northern part of the district and eastern part of Sultanpur.

Chloride Concentration		Block wise area coverage (sq km)									
Range(mg/l)	lta	wa	Khair	abad	Ladp	ura	Sang	od	Sulta	npur	(ca.km)
(Ave. of years 2005-09)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq kill)
< 250	715.3	79	645	88	1,475.8	100	1,083.0	99	842.1	93	4,761.2
250-1000	190.9	21	89.6	12	2.4	-	12.8	1	65.4	7	361.1
> 1000	-	-	-	-	-	-	-	-	-	-	-
Total	906.2	100	734.6	100	1478.2	100	1095.8	100	907.5	100	5,122.3

76°52'06"

ŝ

76°50'48"

DISTRICT – KOTA

GROUND WATER FLUORIDE DISTRIBUTION

The Fluoride concentration map is presented in Plate – XIV. The areas with low concentration (i.e.,>1.5 mg/l) are shown in yellow color and occupies almost 99% of the district area which is suitable for domestic purpose. The area with moderately high concentration (1.5-3.0 mg/l) in green color patches is covered a small portion of the district area, which is insignificant. Overall, the ground water is suitable for domestic purposes in the district from fluoride concentration perspective.

Fluoride concentration	Block wise area coverage (sq km)										Total Area
range(mg/l)	lta	wa	Khaiı	abad	Ladp	ura	Sang	od	Sulta	npur	(ca km)
(Ave. of years 2005-09)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq kiii)
< 1.5	902.6	99.6	734.6	100.0	1,474.6	99.7	1,095.8	100.0	898.0	99.0	5,105.6
1.5-3.0	3.6	0.4	-	-	3.6	0.3	-	-	9.5	1.0	16.7
> 3.0	-	-	-	-	-	-	-	-	-	-	-
Total	906.2	100.0	734.6	100.0	1,478.2	100.0	1,095.8	100.0	907.5	100.0	5,122.3

GROUND WATER NITRATE DISTRIBUTION

High nitrate concentration in ground water renders it unsuitable for agriculture purposes. Plate – XV shows distribution of Nitrate in ground water. Low nitrate concentration (<50 mg/l) is shown in yellow color occupy approximately 78% of the district area which is suitable for agriculture purpose. The areas with moderately high nitrate concentration (50-100 mg/l) are shown in green color and occupy approximately 18% of the district area, largely southwestern and southern part of the district. Remaining part of the district area approximately 4% is covered with high nitrate concentration (>100 mg/l) which is shown in red colored patches where the ground water is unsuitable for agriculture purpose. The high nitrate concentration areas are seen in most of the districts but the affected areas are large in Itawa and Khairabad blocks.

Nitrate concentration				Total Area							
Range(mg/l)	Itawa		Khairabad		Ladpura		Sangod		Sultanpur		
(Ave. of years 2005-09)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq km)
< 50	660.5	72.9	500.1	68.1	1,053.1	71.2	961.2	87.7	805.3	88.7	3,980.2
50-100	130.4	14.4	171.0	23.3	419.9	28.4	118.4	10.8	102.2	11.3	941.9
>100	115.3	12.7	63.5	8.6	5.2	0.4	16.2	1.5	-	-	200.2
Total	906.2	100.0	734.6	100.0	1,478.2	100.0	1,095.8	100.0	907.5	100.0	5,122.3

Table: Block wise area of Nitrate distribution

DISTRICT – KOTA

Plate – XVI depicts the bedrock depth from ground level in Kota district. The beginning of massive bedrock has been considered for defining top of bedrock surface. The major rocks types constituting the bedrock are limestone, sandstones and shale. These rocks are overlain by alluvial deposits of sand, clay, silt and admixture of these in different proportions and thicknesses. The map of depth to bedrock in meters below ground level reveals that the bedrock surface varies from being very shallow near hardrock exposures to more than 20m bgl. It has been observed from the map that the entire southern part of the district, the bedrock is quite closer to surface (less than 20m bgl) whereas, northwards in areas where alluvium constitutes aquifers, the depth to bedrock increases to more than 20m bgl. A small patch of near surface bedrock has observed in the northeastern part of Itawa block.

Donth to hodrock		Block wise area coverage (sq km)												
Depth to bedrock		Itawa Khai		rabad Lad		pura Sang		od	Sultanpur		(ca km)			
(in bgi)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq kiii)			
< 20	22.6	2.5	734.6	100.0	1,414.6	96.0	1,076.2	98.2	42.0	5.0	3,290.0			
> 20	883.6	97.5	-	-	63.6	4.0	19.6	1.8	865.5	95.0	1,832.3			
Total	906.2	100.0	734.6	100.0	1,478.2	100.0	1,095.8	100.0	907.5	100.0	5,122.3			

UNCONFINED AQUIFER

Alluvial areas:

Alluvial material forms aquifers in most of northern half of the district. The thickness of unconfined aquifer varies from less than 10 m to about 20m with the thickest parts lying to the west of Sultanpur block. A Small portion in Ladpura area also has aquifers formed in thick alluvial aquifer. In Itawa block all of the alluvial aquifer is less than 10m thick.

Unconfined aquifer		Block wisearea coverage (sq km)								
Thickness (m)	Itawa	Khairabad	Ladpura	Sangod	Sultanpur	(sq km)				
< 10	906.2	-	-	-	436.2	1,342.4				
> 10	-	-	14.9	-	192.1	207.0				
Total	906.2	-	14.9	-	628.3	1,549.4				

Hard rock areas:

Weathered, fractured and jointed rock formations occurring at shallower depths constitute good unconfined aquifers. Such zone ranges in thickness from less than 10 meter to just more than 10m covering almost entire parts of the district excluding the northern area. A small area in Ladpura block has more than 10m thick aquifer in hardrocks but is just about 2.2 sq kms in extent.

Unconfined aquifer		Block wise Areacoverage (sq km)							
Thickness (m)	Itawa	Khairabad	Ladpura	Sangod	Sultanpur	(sq km)			
< 10	-	734.6	1,461.1	1,095.8	279.2	3,570.7			
> 10	-	-	2.2	-	-	2.2			
Total	-	734.6	1,463.3	1,095.8	279.2	3,572.9			

Glossary of terms

S. No.	Technical Terms	Definition
1		A saturated geological formation which has good permeability to
1	AQUIFER	supply sufficient quantity of water to a Tube well, well or spring.
2	ARID CLIMATE	Climate characterized by high evaporation and low precipitation.
3	ARTIFICIAL RECHARGE	Addition of water to a ground water reservoir by man-made activity
		The sum total of all atmospheric or meteorological influences
4	CLIMATE	principally temperature, moisture, wind, pressure and evaporation
		of a region.
5		A water bearing strata having confined impermeable overburden. In
5		this aquifer, water level represents the piezometric head.
6	CONTAMINATION	Introduction of undesirable substance, normally not found in water,
Ŭ	contramination	which renders the water unfit for its intended use.
7	DRAWDOWN	The drawdown is the depth by which water level is lowered.
8	FRESH WATER	Water suitable for drinking purpose.
9	GROUND WATER	Water found below the land surface.
10	GROUND WATER BASIN	A hydro-geologic unit containing one large aquifer or several
10		connected and interrelated aquifers.
11	GROUND WATER	The natural infiltration of surface water into the ground.
	RECHARGE	
12	HARD WATER	The water which does not produce sufficient foam with soap.
13	HYDRAULIC	A constant that serves as a measure of permeability of porous
-15	CONDUCTIVITY	medium.
14	HYDROGEOLOGY	The science related with the ground water.
15	HUMID CLIMATE	The area having high moisture content.
16	ISOHYET	A line of equal amount of rainfall.
17	METEOROLOGY	Science of the atmosphere.
18	PERCOLATION	It is flow through a porous substance.
19	PERMEABILITY	The property or capacity of a soil or rock for transmitting water.
20	рН	Value of hydrogen-ion concentration in water. Used as an indicator
20	p	of acidity (pH < 7) or alkalinity (pH > 7).
21	PIEZOMETRIC HEAD	Elevation to which water will rise in a piezometers.
22	RECHARGE	It is a natural or artificial process by which water is added from
		outside to the aquifer.
23	SAFE VIELD	Amount of water which can be extracted from ground water without
	5,4 2 11225	producing undesirable effect.
24	SALINITY	Concentration of dissolved salts.
25	SEMI-ARID	An area is considered semiarid having annual rainfall between 10-20
		inches.
26	SEMI-CONFINED	Aquifer overlain and/or underlain by a relatively thin semi-pervious
	AQUIFER	layer.
27	SPECIFIC YIELD	Quantity of water which is released by a formation after it's
		complete saturation.
28	TOTAL DISSOLVED	Total weight of dissolved mineral constituents in water per unit
	SOLIDS	volume (or weight) of water in the sample.

Dug wells selected on grid basis for monitoring of state water level.

Wind-blown sand deposits

S. No.

G.W. MONITORING

EOLIAN DEPOSITS

STATION

A A A KAR KAR AN AN

S No	Myths	Facts
1	What is Ground Water	Water which occurs below the land in geological
	an underground lake	formations/rocks is Ground water
	 a net work of underground rivers 	
	 a bowl filled with water 	
2	Ground Water occurs everywhere beneath the Land Surface	Not really, it depends on the nature of rock formation
3	There is a relationship between ground water and surface water	Not all the places. Near streams/rivers there is relation
4	Groundwater is not renewable resource	It is renewable source and every year it is being recharged through rain/applied irrigation etc
5	Ground water is unlimited and deeper you drill more discharge	It is limited to annual recharge from rain/applied irrigation. The discharge may not increase if you go deeper
6	Ground Water moves rapidly	The movement of ground water is very slow
7	Ground water pumped from wells is thousands of years old	Generally the ground water being tapped through wells is a few years old
8	If water taste good—it is safe to drink	It may have other chemicals e.g. fluoride, nitrates etc which are harmful
9	Water from free flowing tube wells is very pure	This water can also be contaminated so test before use
10	If I recharge my TW/DW/HP it will not benefit me	It will also benefit you and also adjoing wells
11	There is no static ground water resources in Rajasthan	Rajasthan is also having Static GW resources, and being tapped in most of areas as GW annual withdrawal is more than annual recharge
12	I cannot meet annual cooking and drinking water requirement by rain water harvesting	The water requirement for drinking and cooking is only 8 lit/day. You can harvest this water for family of 5 persons from roof top or paved area of 75 Sq m to meet annual requirement
13	You can increase ground water recharge	This can be done by harvesting the rain water and storing in sub surface reservoir (GW) by constructing the recharge structures
14	You cannot use abandoned TW/HP/DW for ground water recharge	These should be used as recharge structures as harvested rain water is directly put into GW reservoir
15	Putting waste near HP/TW will not cause any problem	Such actions will pollute wells and water

11

-

Rolta India Limited

Central & Registered Office Rolta Tower A, Rolta Technology Park, MIDC, Andheri (East), Mumbai - 400 093 Tel : +91 (22) 2926 6666, 3087 6543 Fax : +91 (22) 2836 5992 Email : indsales@rolta.com

www.rolta.com

.