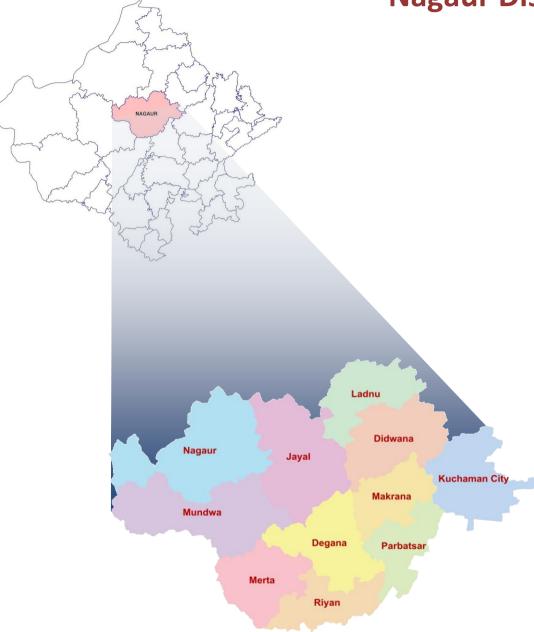

Hydrogeological Atlas of Rajasthan Nagaur District



Hydrogeological Atlas of Rajasthan

Contents:

List of Plates	Title	Page No.		
Plate I	Administrative Map	2		
Plate II	Topography	4		
Plate III	Rainfall Distribution	4		
Plate IV	Geological Map	6		
Plate V	Geomorphological Map	6		
Plate VI	Aquifer Map	8		
Plate VII	Stage of Ground Water Development (Block wise) 2011	8		
Plate VIII	Location of Exploratory and Ground Water Monitoring Stations	10		
Plate IX	Depth to Water Level (Pre-Monsoon 2010)	10		
Plate X	Water Table Elevation (Pre-Monsoon 2010)	12		
Plate XI	Water Level Fluctuation (Pre-Post Monsoon 2010)	12		
Plate XII	Electrical Conductivity Distribution (Average Pre-Monsoon 2005-09)	14		
Plate XIII	Chloride Distribution (Average Pre-Monsoon 2005-09)	14		
Plate XIV	Fluoride Distribution (Average Pre-Monsoon 2005-09)			
Plate XV	Nitrate Distribution (Average Pre-Monsoon 2005-09)			
Plate XVI	Depth to Bedrock	18		
Plate XVII	Map of Unconfined Aquifer	18		
Glossary of terms 19				

Location:

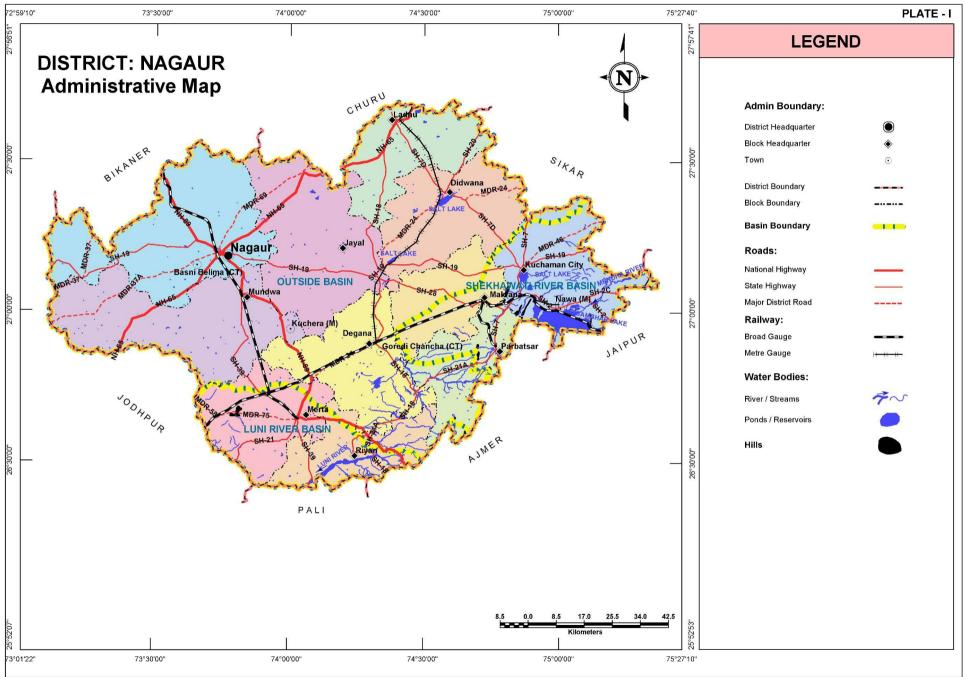
Nagaur district is located in the central part of Rajasthan. It is bounded in the north by Bikaner and Churu districts, in the east by Sikar and Jaipur districts, south by Pali and Ajmer districts and the western boundary is bounded by Jodhpur district. It stretches between 26° 24' 01.10" to 27° 42' 28.21" north latitude and 73° 04' 43.46" to 75° 22' 04.08" east longitude covering area of 17,805.1 sq km. Major part of the district does not have a systematic drainage system, so most of the central and northern region is part of 'Outside' Basin. The Luni River drains in the southwestern part and Sekhawati River drains in the southeastern part of Nagaur district.

Administrative Set-up:

Nagaur district is administratively divided into eleven blocks. The following table summarizes the basic statistics of the district at block level.

S. No.	Block Name	Population	Area	% of District	Total Number of
5. NO.	DIOCKINATILE	(Based on 2001 census)	(sq km)	Area	Towns and Villages
1	Degana	1,99,923	1,578.7	9.0	153
2	Didwana	3,29,706	1,641.9	9.2	173
3	Jayal	2,24,944	2,201.2	12.3	137
4	Kuchaman City	3,36,963	1,632.1	9.1	195
5	Ladnu	2,15,096	1,275.3	7.0	99
6	Makrana	2,83,000	1,076.3	6.0	120
7	Merta	2,23,681	1,356.8	8.0	116
8	Mundwa	2,33,070	2,335.4	13.1	124
9	Nagaur	3,35,201	2,555.0	14.3	156
10	Parbatsar	2,00,234	1,045.6	6.0	111
11	Riyan	1,79,629	1,106.8	6.0	128
	Total	27,61,447	17,805.1	100.0	1,512

Nagaur district has 1,512 towns and villages, of which eleven are block headquarters as well.


Climate:

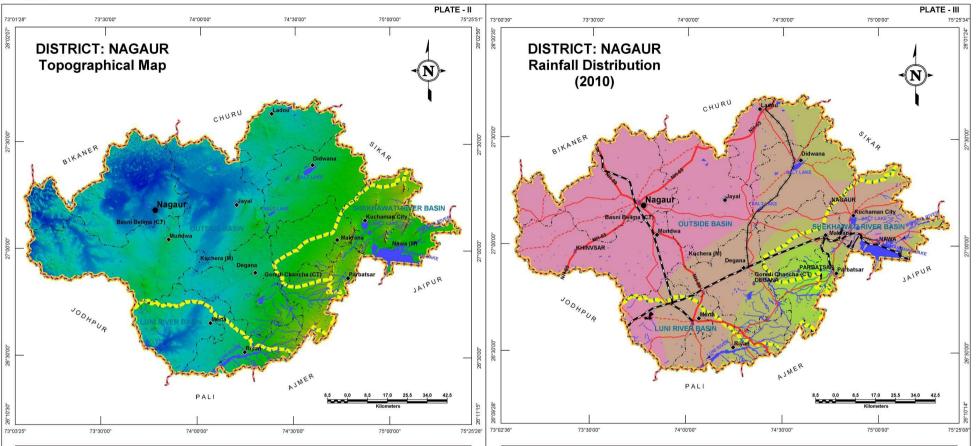
Nagaur is largely part of arid climate with hot summer. Sand storms are common in summer. The climate of the district is marked by extreme dryness, large variations of temperature & highly irregular rainfall patterns. The maximum temperature recorded in district is 47.2 °C with 0 °C as the lowest recorded temperature. The average temperature of the district is 23.3°C. The winter season extends from mid-November until the beginning of March. The rainy season is relatively short, extending from July through mid-September. The average rainfall in the district is 349.8mm.

The general topography of the district is undulating. Eastern part of the district comprises small scattered hillocks. The slope of the area is towards west. The northwestern part of the district is extensively covered with sand dunes. The general topography in the district ranges between 275 m to 375 m above mean sea level. Elevation ranges from a minimum of 275.0 m above mean sea level in Nagaur block in the NW part of the district and maximum of 794.0 m above mean sea level In Parbatsar block in eastern part of the district.

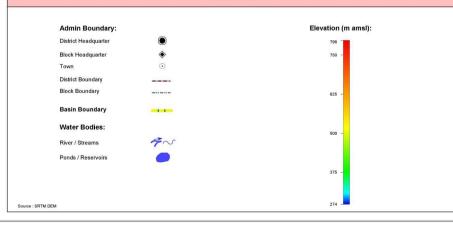
Table: Block wise minimum and maximum elevation						
S. No.	Block Name	Min. Elevation (m amsl)	Max. Elevation (m amsl)			
1	Degana	299.0	459.0			
2	Didwana	306.0	416.0			
3	Jayal	284.0	454.0			
4	Kuchaman City	357.0	688.0			
5	Ladnu	296.0	371.0			
6	Makrana	339.0	633.0			
7	Merta	279.0	384.0			
8	Mundwa	278.0	391.0			
9	Nagaur	275.0	348.0			
10	Parbatsar	365.0	794.0			
11	Riyan	298.0	735.0			

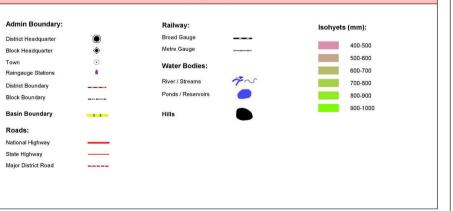
	Table: Block wise	minimum and	maximum	elevation
--	-------------------	-------------	---------	-----------

RAINFALL


The rainfall is generally scanty and erratic. The general distribution of rainfall across can be visualized from isohyets presented in the Plate – III where rainfall is gradually increasing from northwest to southeast. Most of the blocks seem to have generally received rainfall in the range of 400 to 600 mm in the year 2010 and the average annual rainfall was 559.4 mm based on the data of available blocks. Parbatsar block received highest rainfall (911.6 mm) whereas lowest was in Nagaur block (424.1 mm). Highest average annual rainfall was recorded in Parbatsar block about 750.7 mm.

Block Name	Minimum Annual Rainfall (mm)	Maximum Annual Rainfall (mm)	Average Annual Rainfall (mm)
Degana	495.7	736.8	579.6
Didwana	475.4	666.7	576.6
Jayal	434.0	534.8	468.5
Kuchaman City	478.7	666.7	566.1
Ladnu	462.8	680.9	545.4
Makrana	543.3	859.8	635.1
Merta	466.5	574.3	511.6
Mundwa	436.5	508.7	466.1
Nagaur	424.1	462.7	445.1
Parbatsar	590.2	911.6	750.7
Riyan	491.4	719.5	608.7





LEGEND

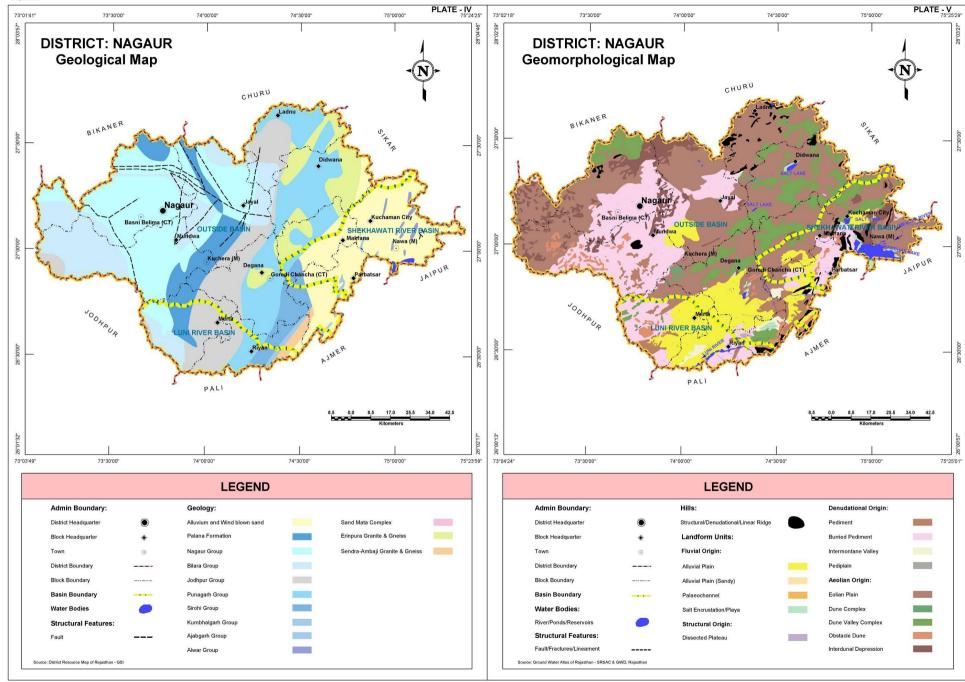
GEOLOGY and GEOMORPHOLOGY

Geology

The district is occupied by the Delhi Super Group, Erinpura granite and Marwar Super Group rocks. Delhi Super Group comprises of the Punagarh, Siroli, Kumbhalgarh, Alwar and Ajabgarh Groups mainly exposed in the Ladnu, Didwana, Makrana, Degana and Riyan blocks of the district trending NNE to south. The Kumbhalgarh Group comprises of calc-schist, gneiss and marble, exposed in Rivan and Kuchman city blocks in small patches. The Alwar Group comprises mainly quartzite and arkose whereas the overlying Ajabgarh Group is consists of crystalline limestone and marble, siliceous limestone, ferruginous quartzite, slate and schist both mainly exposed in the northeastern part of district around Kuchaman city and Parbatsar blocks. Erinpura granite & gneiss occupies the NNE part and exposed in Ladnu, Didwana, Makrana and Degana blocks, Malani Igneous Suite of rocks viz, rhyolite and granite are exposed in the NNE to SSW part of the district in Ladnu, Didwana, Degana, Merta and Riyan blocks of the district. Marwar Super Group, occupying more than 50% area of the district is mainly exposed in the western part of the district. This sedimentary sequence has been classified into Jodhpur, Bilara and Nagaur Groups and consists of sandstone, dolomite and limestone.

Super Group	Group	Formation			
	Quaternary	Aeolian sand, Kankar, clay			
	Nagaur	Sandstone			
Marwar	Bilara	Dolomite and Limestone			
	Jodhpur	Sandstone			
		Malani Igneous suite			
	Punagarh	Shale, Phyllite, micaschist & quartzite with			
	Fullagalli	metavolcanics			
	Sirohi	Phyllite, mica schist with intercalated quartzite &			
	5110111	marble			
Delhi	Intrusive	Erinpura and Sendra-Ambaji Granite & Gneiss			
	Kumbhalgarh	Calc-schist, gneisses, marble			
	Ajabgarh	Crystaline limestone & marble, siliceous limestone,			
	Ajabgaili	ferruginous quartzite, slate & schist			
	Alwar	Quartzite and arkose			

Geomorphology


Table: Geomorphologic units, their description and distribution

Origin	Landform Unit	Description				
	Dune Complex	An undulating plain composed of number of sand dunes of crescent shape.				
	Dune Valley Complex	Cluster of dunes and interdunal spaces with undulating topography formed due to wind-blown activity, comprising of unconsolidated sand and silt.				
Aeolian	Eolian Plain	Formed by aeolian activity, with sand dunes of varying height, size and slope. Long stretches of sand sheet. Gently sloping flat to undulating plain, comprised of fine to medium grained sand and silt. Also scattered xerophytic vegetation.				
	Interdunal	Slightly depressed area in between the dunal complex showing				
	Depression	moisture and fine sediments.				
	Obstacle Dune	Formed on windward/leeward sides of obstacle like isolated hills or continuous chain of hills, dune to obstruction in path of sand laden winds. Badly dissected well cemented and vegetated.				
	Buried	Pediment covers essentially with relatively thicker alluvial, colluvial				
	Pediment	or weathered materials.				
	Intermontane	Depression between mountains, generally broad & linear, fille				
Denudational	Valley	with colluvial deposits.				
Denudational	Pediment	Broad gently sloping rock flooring, erosional surface of low relief between hill and plain, comprised of varied lithology, criss-crossed by fractures and faults.				
	Pediplain	Coalescence and extensive occurrence of pediment.				
	Alluvial Plain	Mainly undulating landscape formed due to fluvial activity, comprising of gravels, sand, silt and clay. Terrain mainly undulating, produced by extensive deposition of alluvium.				
Fluvial	Alluvial Plain (Sandy)	Flat to gentle undulating plain formed due to fluvial activity, mainly consists of gravels, sand, silt and clay with unconsolidated material of varying lithology, predominantly sand along river.				
	Paleochannel	Mainly buried on abandoned stream/river courses, comprising of coarse textured material of variable sizes.				
	Salt Encrustation/ Playa	Topographical depression comprising of clay, silt, sand and soluble salts, usually undrained and devoid of vegetation.				
Hills	Denudational, Structural Hill, Linear Ridge	Inear to accuste hills showing definite trend-lines with varying				

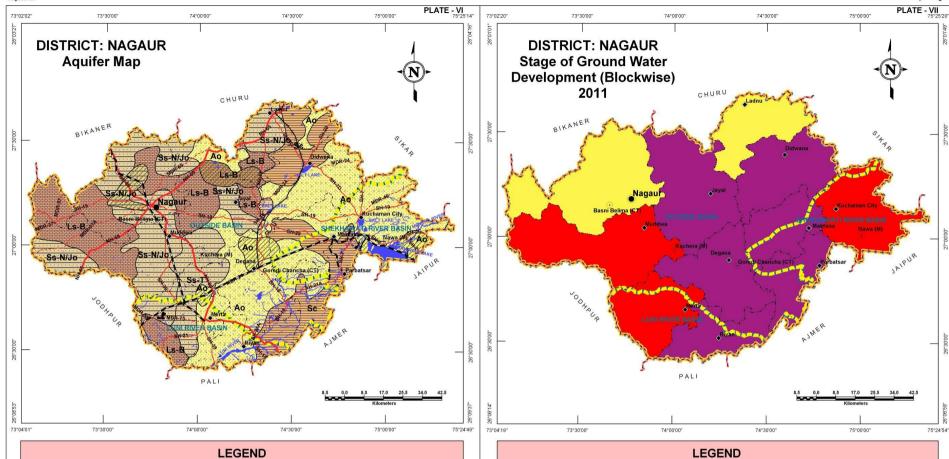
Older alluvium constitutes the most spatially prominent aquifer in the district comprising of sand, silt and kankar occupying about 37% of district area. Other aquifers are in hardrocks and important among them are limestone of Bilara Group, Tertiary sandstones and the Nagaur Jodhpur sandstone occupying about 20% and 28% aquifer areas in the district respectively. In the southeastern part of the district aquifers formed in schist is seen occupying about 2570 sq kms aquifer area i.e., 14.4%.

Aquifer in Potential Zone	Area (sq km)	% age of district	Description of the unit/Occurrence
Older Alluvium	6,562.0		This litho-unit comprises of mixture of heterogeneous fine to
	0,502.0	36.9	medium grained sand, silt and kankar.
Bilara Limestone	3,629.8	20.4	It is grey to buff coloured hard and compact.
Tartian Conditions	1 002 9		Medium to coarse grained, consolidated to semi consolidated
Tertiary Sandstone	1,093.8	6.1	sandstone.
Nagaur & Jodhpur	2.016.5		Buff to reddish brown in colour, fine to medium grained hard and
Sandstone	3,916.5	22.0	compact sandstone.
Cabiat			Medium to fine grained compact rock. The litho units are soft,
Schist	2,568.5	14.4	friable and have closely spaced cleavage.
Hills	34.5	0.2	
Total	17,805.1	100.0	

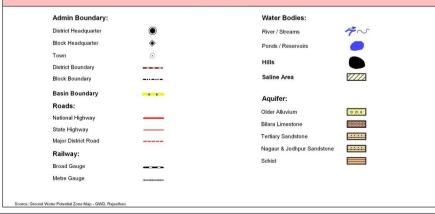
Table: aquifer potential zones their area and their description

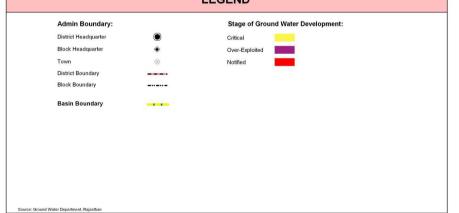
STAGE OF GROUND WATER DEVELOPMENT

Ground water development is very high in the district as suggested by the resource assessment studies and categorization of blocks on that basis. Three blocks have been categorized as Notified where the ground water is under severe stress and no more development of it is permissible. >100% development of ground water is seen in six other blocks of the district which have been categorized as 'Over Exploited'. Ladnu and Nagaur are the two districts where the ground water situation appears to be better than other blocks but still falling within the 'Critical' category i.e., close to 100% development has already taken place.


Categorization on the basis of stage of development of ground water	Block Name		
Critical	Ladnu, Nagaur		
Over Exploited	Jayal, Parbatsar, Makrana, Didwana, Riyan, Degana		
Notified	Mundwa, Merta, Kuchaman City		

Basis for categorization: Ground water development <=100% - Critical and >100% - Over-Exploited. In Notified blocks development of GW is not permitted any more.





LOCATION OF EXPLORATORY AND GROUND WATER MONITORING WELLS

Nagaur district has a well distributed network of exploratory wells (265) and ground water monitoring stations (324) in the district owned by RGWD (184 and 311 respectively) and CGWB (81 and 13 respectively). The exploratory wells have formed the basis for delineation of subsurface aquifer distribution scenario in three dimensions. Benchmarking and optimization studies suggest that ground water level monitoring network is sufficiently distributed for appropriate monitoring but for water quality, 113 wells are recommended to be added to existing network for optimum monitoring of the aquifers.

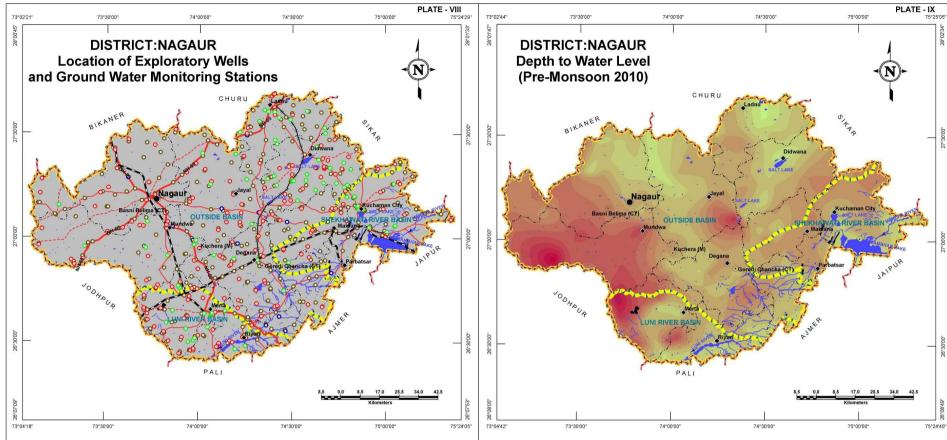
Block Name	Explo	oratory W	atory Wells		Ground Water Monitoring Stations		Recommended additional wells for optimization of monitoring network	
	CGWB	RGWD	Total	CGWB	RGWD	Total	Water Level	Water Quality
Degana	5	20	25	1	35	36	0	12
Didwana	22	25	47	-	31	31	0	20
Jayal	4	19	23	2	29	31	0	1
Kuchaman City	13	18	31	-	35	35	0	49
Ladnu	11	13	24	1	32	33	0	0
Makrana	0	12	12	1	25	26	0	2
Merta	12	24	36	-	29	29	0	4
Mundwa	7	20	27	3	23	26	0	2
Nagaur	1	15	16	1	35	36	0	0
Parbatsar	1	4	5	1	18	19	0	9
Riyan	5	14	19	3	19	22	0	14
Total	81	184	265	13	311	324	0	113

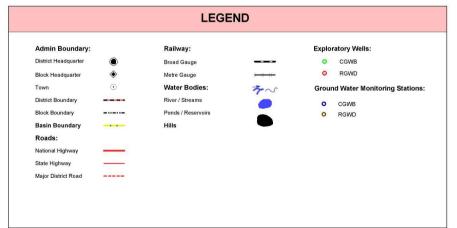
Table: Block wise count of wells (existing and recommended)

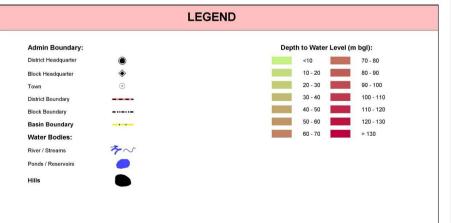
DEPTH TO WATER LEVEL (PRE MONSOON - 2010)

Depth to water level shows variation from less than 10m below ground level to about 130m below bgl. The alluvial aquifers in the eastern and northern parts have shown a fairly shallower ground water

occurrence i.e., upto 60m of depth from ground level whereas the hardrock areas in the western part i.e., within Sandstone and limestone aquifers very deep water levels reaching upto 130m bgl are seen.


Block Name				Block	wise area	coverage	(sq km) p	er depth t	to water l	evel rang	e (m bgl) *	•			Total Area
вюск нате	<10	10-20	20-30	30-40	40-50	50-60	60-70	70-80	80-90	90-100	100-110	110-120	120-130	>130	(sq km)
Degana	-	-	3.0	387.3	597.9	363.5	159.3	59.3	8.3	-	-	-	-	-	1,578.6
Didwana	3.0	77.3	291.6	446.4	441.9	280.3	97.2	3.6	0.5	-	-	-	-	-	1,641.8
Jayal	-	162.8	284.7	677.9	671.3	181.7	87.0	67.2	42.4	21.5	4.7	-	-	-	2,201.2
Kuchaman City	-	56.8	364.9	280.7	332.5	399.0	191.2	0.3	-	-	-	-	-	-	1,625.4
Ladnu	32.9	161.5	272.8	327.4	386.3	94.1	0.3	-	-	-	-	-	-	-	1,275.3
Makrana	-	-	6.2	81.0	394.2	551.5	40.5	1.0	-	-	-	-	-	-	1,074.4
Merta	-	-	54.9	177.8	287.5	170.3	116.8	163.1	171.6	78.9	62.6	48.9	17.1	0.1	1,349.6
Mundwa	-	-	-	25.5	78.5	122.6	212.9	418.7	930.1	305.3	123.8	75.7	36.4	6.0	2,335.5
Nagaur	-	3.1	337.0	529.3	244.7	223.5	623.7	470.4	107.6	15.6	-	-	-	-	2,554.9
Parbatsar	-	-	83.5	392.5	275.2	273.9	2.1	-	-	-	-	-	-	-	1,027.2
Riyan	-	34.4	346.8	308.6	289.1	54.3	28.9	23.4	18.5	2.7	-	-	-	-	1,106.7
Total	35.9	495.9	2,045.4	3,634.4	3,999.1	2,714.7	1,559.9	1,207.0	1,279.0	424.0	191.1	124.6	53.5	6.1	17,770.6


* The area covered in the derived maps is less than the total district area since the hills have been excluded from interpolation/contouring.



The flow direction of ground water in the district is broadly indicated as from east to west with local modification occasionally. Perusal of Plate – X indicates that water table elevation is highest reaching up to >440m above mean sea level in southeast part (Parbatsar Block) of the district whereas minimum elevation (<180m amsl) is in the Mundwa and Merta blocks in the western most part of the district.

				Blo	ck wise are	a coverage	(sq km) per	water table	elevation	range (m an	nsl)				Total Area
Block Name	< 180	180 - 200	200 - 220	220 - 240	240 - 260	260 - 280	280 - 300	300 - 320	320 - 340	340 - 360	360 - 380	380 - 400	400 - 440	> 440	(sq km)
Degana	-	-	-	-	74.4	214.3	339.3	555.3	198.2	103.7	66.8	26.6	-	-	1,578.6
Didwana	-	-	-	-	2.9	126.6	336.4	548.6	495.9	130.0	1.4	-	-	-	1,641.8
Jayal	-	-	-	-	1,553.2	579.3	68.2	0.5	-	-	-	-	-	-	2,201.2
Kuchaman City	-	-	-	-	-	-	-	-	25.2	333.3	952.6	235.0	79.3	-	1,625.4
Ladnu	-	-	-	-	106.3	260.0	390.3	513.7	5.0	-	-	-	-	-	1,275.3
Makrana	-	-	-	-	-	-	-	403.9	450.2	153.6	49.8	16.9	-	-	1,074.4
Merta	-	-	67.1	598.4	295.7	197.4	191.0	-	-	-	-	-	-	-	1,349.6
Mundwa	1.8	205.9	513.8	822.3	713.5	78.2	-	-	-	-	-	-	-	-	2,335.5
Nagaur	-	-	416.0	1,026.6	761.3	351.0	-	-	-	-	-	-	-	-	2,554.9
Parbatsar	-	-	-	-	-	-	-	30.5	71.7	81.5	188.5	353.4	282.0	19.6	1,027.2
Riyan	-	-	-	56.0	99.9	72.5	143.2	229.8	132.7	88.0	78.7	89.9	115.0	1.0	1,106.7
Total	1.8	205.9	996.9	2,503.3	3,607.2	1,879.3	1,468.4	2,282.3	1,378.9	890.1	1,337.8	721.8	476.3	20.6	17,770.6

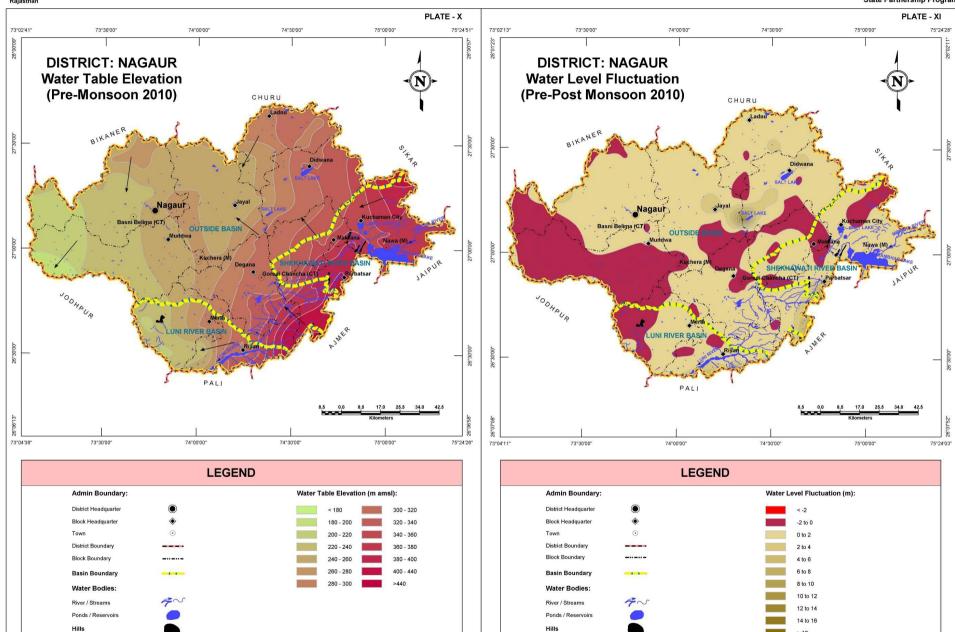
Table: Block wise area covered in water table elevation range

WATER LEVEL FLUCTUATION (PRE TO POST MONSOON 2010)

Ground water level fluctuation is seen to vary from fall of 2m to rise by 16m in the district as seen in Plate – XI. The negative fluctuation areas, mostly in the range from 0 to -2m are the areas where over exploitation is taking place as a belt running from west to east in the central part of the district. Rest of the district has shown a general rise in ground water level in the post monsoon season by upto 4m and occasionally rising by 16m (however very localized rise in nature) as seen in southwestern part of Didwana block.

Water level fluctuation				Blo	ock wise are	a coverage	(sq km)					Total Area
range (m)	Degana	Didwana	Jayal	Kuchaman City	Ladnu	Makrana	Merta	Mundwa	Nagaur	Parbatsar	Riyan	(sq km)
< -2	-	-	-	-	-	-	-	-	1.0	-	-	1.0
-2 to 0	387.5	186.9	300.4	316.1	83.9	451.6	576.2	1,956.9	594.3	139.8	127.0	5,120.6
0 to 2	1,191.1	1,212.8	1,710.7	1,276.5	1,156.4	622.8	773.0	378.6	1,927.6	628.5	842.9	11,720.9
2 to 4	-	169.6	138.2	30.0	35.0	-	0.4	-	32.0	137.0	88.9	631.1
4 to 6	-	24.0	24.0	2.8	-	-	-	-	-	75.6	37.8	164.2
6 to 8	-	16.7	13.7	-	-	-	-	-	-	40.5	8.3	79.2
8 to 10	-	12.9	7.4	-	-	-	-	-	-	5.8	1.8	27.9
10 to 12	-	8.8	4.5	-	-	-	-	-	-	-	-	13.3
12 to 14	-	5.7	2.0	-	-	-	-	-	-	-	-	7.7
14 to 16	-	4.0	0.3	-	-	-	-	-	-	-	-	4.3
> 16	-	0.4	-	-	-	-	-	-	-	-	-	0.4
Total	1,578.6	1,641.8	2,201.2	1,625.4	1,275.3	1,074.4	1,349.6	2,335.5	2,554.9	1,027.2	1,106.7	17,770.6

Table: Block wise area covered in	n water fluctuation zone
-----------------------------------	--------------------------



Water Table Elevation

N

> 16

DISTRICT – NAGAUR

The Electrical conductivity (at 25°C) distribution map is presented in Plate – XII. The areas with high EC values in ground water (>4000 μ S/cm) are shown in red color and are seen to occupy almost 50% of the district in central part of the area where the ground water is not suitable for domestic purpose. Fringing the high EC areas are the areas with moderately high EC values (2000-4000 μ S/cm) which also occupy significantly large areas to the extent of 38% of the district. Remaining part of the district, approximately 11% has low EC values in ground water (<2000 μ S/cm) as shown in yellow color in the northern part of Kuchman City and in the western part of Parbatsar blocks. The ground water in this low EC area is suitable for domestic purpose but is of limited spatial occurrence. By and large the ground water in the district is having high EC with limited suitability for domestic purposes.

Table: Block wise area of Electrical co	onductivity distribution
---	--------------------------

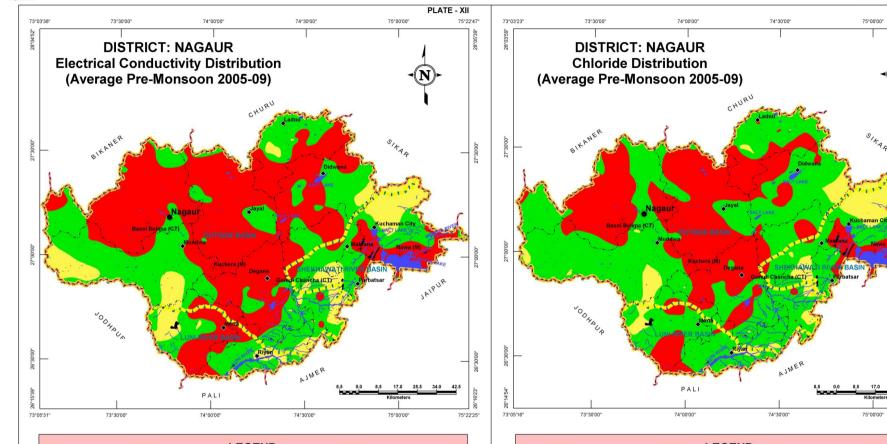
Electrical Conductivity Ranges										Block w	ise area c	overage	(sq km)										Total Area
(μS/cm at 25°C)	Dega	na	Didw	ana	Jay	al	Kucham	an City	Lad	nu	Makr	ana	Mer	rta	Mun	dwa	Naga	aur	Parba	tsar	Riya	an	
(Ave. of years 2005-09)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq km)
< 2000	3.8	0.2	96.0	5.9	-	-	550.7	33.9	44.6	3.5	56.4	5.3	227.0	16.8	501.9	21.5	5.0	0.2	329.4	32.1	176.4	16.0	1,991.2
2000-4000	487.9	30.9	643.2	39.1	324.4	14.7	443.8	27.3	558.1	43.7	528.3	49.1	454.1	33.7	1,466.8	62.8	595.8	23.3	608.8	59.2	699.0	63.0	6,810.2
>4000	1,086.9	68.9	902.6	55.0	1,876.8	85.3	630.9	38.8	672.6	52.8	489.7	45.6	668.5	49.5	366.8	15.7	1,954.1	76.5	89.0	8.7	231.3	21.0	8,969.2
Total	1,578.6	100.0	1,641.8	100.0	2,201.2	100.0	1,625.4	100.0	1,275.3	100.0	1,074.4	100.0	1,349.6	100.0	2,335.5	100.0	2,554.9	100.0	1,027.2	100.0	1,106.7	100.0	17,770.6

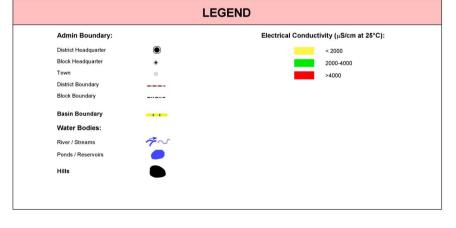
GROUND WATER CHLORIDE DISTRIBUTION

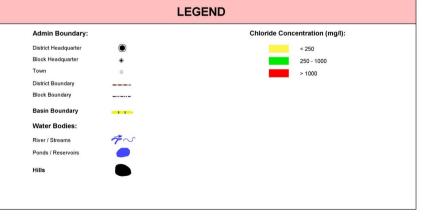
High chloride concentration in ground water also renders it unsuitable for domestic and other purposes. The green colored regions in Plate – XIII are such areas where chloride concentration is moderately high (250-1000 mg/l) which occupy approximately 56% of the district area. The areas with high chloride concentration (>1000 mg/l) are shown in red color approximately occupying 37% of the district area. Together these two areas constitute about 93% area of the district where the ground water has limited suitability for domestic purposes. That leaves just about 7% of the district which has low chloride concentration (<250 mg/l, yellow color in the map) located around north of Kuchman City that is suitable for domestic purposes.

								Table.	DIOCK WIS		JI CHIOIIC	ie uisti	ibution										
Chloride Concentration										Block w	ise area co	overage	(sq km)										Total
Range (mg/l)	Dega	ana	Didw	ana	Jay	al	Kucham	an City	Lad	nu	Makr	ana	Mer	rta	Muno	dwa	Naga	aur	Parba	tsar	Riya	an	Area
(Ave. of years 2005-09)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq km)
< 250	2.4	-	157.0	10.0	-	-	561.8	34.5	17.4	1.0	61.9	6.0	119.8	9.0	187.2	8.0	-	-	167.0	16.5	82.7	7.5	1,357.2
250-1000	704.6	45.0	1,092.0	67.5	451.7	21.0	484.7	30.0	798.2	63.0	742.8	69.0	812.0	60.0	1,921.7	82.0	1,135.7	44.0	794.1	77.5	931.1	84.2	9,868.6
> 1000	871.6	55.0	392.8	22.5	1,749.5	79.0	578.9	35.5	459.7	36.0	269.7	25.0	417.8	31.0	226.6	10.0	1,419.2	56.0	66.1	6.0	92.9	8.3	6,544.8
Total	1,578.6	100.0	1,641.8	100.0	2,201.2	100.0	1,625.4	100.0	1,275.3	100.0	1,074.4	100.0	1,349.6	100.0	2,335.5	100.0	2,554.9	100.0	1,027.2	100.0	1,106.7	100.0	17,770.6

Table: Block wise area of Chloride distribution




PLATE - XIII


1PU'

75°22'43"

75°23'05"

GROUND WATER FLUORIDE DISTRIBUTION

DISTRICT – NAGAUR

The Fluoride concentration map is presented in Plate – XIV. The areas with moderately high concentration (1.5-3.0 mg/l) are shown in green color that occupy approximately 54% of the total district area and the areas with high concentration (>3.0 mg/l) are shown in red color which occupy 25% of the district area. Together these areas account for about 79% of district area where ground water is unsuitable for domestic purposes because of high (>1.5 mg/l) fluoride concentration. Remaining part (21%) of the district area falls under low concentration (<1.5 mg/l) and shown in the map with yellow color. Such areas are seen largely in the southern part of Ladnu and around the Kuchman City and Nawa where the ground water is suitable for domestic purpose.

Table: Block wise area of Fluoride distribution

Fluoride concentration										Block w	ise area c	overage	(sq km)										Total Area
Range(mg/l)	Dega	ina	Didw	ana	Jaya	al	Kuchama	an City	Ladı	nu	Makr	ana	Me	rta	Muno	dwa	Naga	aur	Parba	tsar	Riya	an	
(Ave. of years 2005-09)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq km)
< 1.5	98.8	6.3	436.0	26.6	358.4	16.3	1,220.3	75.1	460.2	36.1	20.9	2.0	383.7	28.4	89.3	3.8	306.0	12.0	315.8	30.7	78.8	7.0	3,768.2
1.5-3.0	844.1	53.5	1,094.1	66.6	1,528.1	69.4	338.1	20.8	446.2	35.0	473.5	44.0	958.2	71.0	1,508.9	64.6	1,115.6	43.7	547.7	53.4	778.1	70.0	9,632.6
> 3.0	635.7	40.2	111.7	6.8	314.7	14.3	67.0	4.1	368.9	28.9	580.0	54.0	7.7	0.6	737.3	31.6	1,133.3	44.3	163.7	15.9	249.8	23.0	4,369.8
Total	1,578.6	100.0	1,641.8	100.0	2,201.2	100.0	1,625.4	100.0	1,275.3	100.0	1,074.4	100.0	1,349.6	100.0	2,335.5	100.0	2,554.9	100.0	1,027.2	100.0	1,106.7	100.0	17,770.6

GROUND WATER NITRATE DISTRIBUTION

High nitrate concentration in ground water renders it unsuitable for agriculture purposes. Plate – XV shows distribution of Nitrate in ground water of Nagaur district. High nitrate concentration (>100 mg/l) is shown in red color and occupies approximately 64% of the district area which is not suitable for agriculture purpose. The areas with moderately high nitrate concentration (50-100 mg/l) are shown in green color and occupy approximately 27% of the district area. Remaining part of the district has low nitrate concentration (<50 mg/l) in ground water, shown in yellow color. Such low Nitrate areas are largely seen around Metra, Parbatsar and Kuchman City where the ground water is suitable for agriculture purpose.

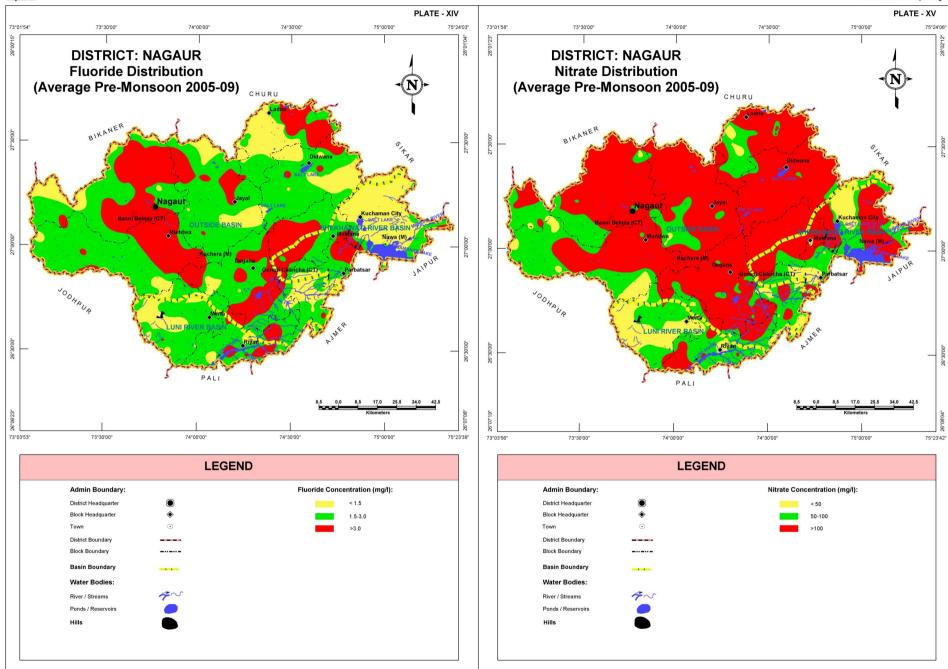

Nitrate concentration										Block w	ise area c	overage	(sq km)										Total
range(mg/l)	Dega	ana	Didw	ana	Jay	al	Kucham	an City	Lad	nu	Makr	ana	Mer	rta	Muno	lwa	Naga	aur	Parba	tsar	Riya	an	Area
(Ave. of years 2005-09)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq km)
< 50	-	-	3.7	0.2	12.3	0.6	307.2	18.9	56.4	4.4	13.0	1.2	658.8	48.8	215.7	9.2	19.0	0.7	249.2	24.3	85.0	8.0	1,620.3
50-100	139.1	8.8	66.1	4.1	310.7	14.1	461.0	28.4	319.0	25.0	88.4	8.2	607.8	45.0	934.5	40.0	683.6	26.8	561.1	54.6	655.9	59.0	4,827.2
>100	1,439.5	91.2	1,572.0	95.7	1,878.2	85.3	857.2	52.7	899.9	70.6	973.0	90.6	83.0	6.2	1,185.3	50.8	1,852.3	72.5	216.9	21.1	365.8	33.0	11,323.1
Total	1,578.6	100.0	1,641.8	100.0	2,201.2	100.0	1,625.4	100.0	1,275.3	100.0	1,074.4	100.0	1,349.6	100.0	2,335.5	100.0	2,554.9	100.0	1,027.2	100.0	1,106.7	100.0	17,770.6

Table: Block wise area of Nitrate distribution

DISTRICT – NAGAUR

The thick alluvial deposits in Nagaur district are underlain by rock of different lithology and age. Plate – XVI depicts the distribution of bedrock depth below ground level. The beginning of massive bedrock has been considered for defining top of bedrock surface. The major rocks types occurring in the district are Limestone, Sandstones and Schist. These rocks are overlain by alluvial deposits of sand, clay, silt and admixture of these in different proportions and thicknesses. The map of depth to bedrock in meters below ground level reveals that the bedrock surface is highly undulating in the western part whereas it is relatively even northeast and southwards. It varies from less than 20m bgl to more than 260m bgl. Shallow bedrock depth (less than 20m bgl) is found in the north part of Landu block. Deepest occurrence of bedrock (indicating high alluvial thickness) is found in eastern part of Nagur block (more than 260m bgl) covering a small area of eight sq km. The central, eastern and south parts of the district have the bedrock reaching upto 160m bgl whereas, Nagur block has moderately deep bedrock i.e. in the range of 160m bgl to 260m bgl.

Danah da hadaa da										Block w	ise area c	overage	(sq km)										Tatal Ana
Depth to bedrock (m bgl)	Dega	ina	Didw	ana	Jay	al	Kuchama	an City	Lad	nu	Makr	ana	Mei	rta	Mun	dwa	Naga	aur	Parba	tsar	Riya	an	Total Area (sq km)
(in bgi)	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	Area	%age	(sq kiii)
< 20	-	-	-	-	-	-	-	-	26.4	2.0	-	-	-	-	-	-	-	-	-	-	-	-	26.4
20-40	-	-	-	-	-	-	-	-	179.9	14.0	-	-	-	-	0.1	-	-	-	193.8	19.0	19.6	2.0	393.4
40-60	6.4	-	98.2	6.0	169.0	7.7	610.7	37.6	160.5	13.0	-	-	-	-	1.0	-	15.1	1.0	267.3	26.0	126.0	11.0	1,454.2
60-80	25.0	2.0	1,137.0	69.0	820.0	37.2	718.9	44.2	297.3	23.0	321.7	30.0	-	-	14.3	1.0	111.5	4.0	228.0	22.0	306.4	28.0	3,980.1
80-100	1,112.8	70.0	341.8	21.0	651.6	29.6	295.8	18.2	264.8	21.0	513.6	48.0	1,243.8	92.0	744.8	32.0	302.5	12.0	305.1	30.0	535.7	48.0	6,312.3
100-120	347.5	22.0	36.9	2.0	407.0	18.5	-	-	206.8	16.0	239.1	22.0	105.8	8.0	1,079.6	46.0	230.7	9.0	33.0	3.0	119.0	11.0	2,805.4
120-140	86.9	6.0	13.0	1.0	138.6	6.3	-	-	106.1	8.0	-	-	-	-	401.3	17.0	893.5	35.0	-	-	-	-	1,639.4
140-160	-	-	10.6	1.0	15.0	0.7	-	-	23.9	2.0	-	-	-	-	94.4	4.0	383.9	15.0	-	-	-	-	527.8
160-180	-	-	4.3	-	-	-	-	-	9.6	1.0	-	-	-	-	-	-	285.0	11.0	-	-	-	-	298.9
180-200	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	173.7	7.0	-	-	-	-	173.7
200-220	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	92.2	4.0	-	-	-	-	92.2
220-240	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	35.4	1.0	-	-	-	-	35.4
240-260	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	23.3	1.0	-	-	-	-	23.3
> 260	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	8.1	-	-	-	-	-	8.1
Total	1,578.6	100.0	1,641.8	100.0	2,201.2	100.0	1,625.4	100.0	1,275.3	100.0	1,074.4	100.0	1,349.6	100.0	2,335.5	100.0	2,554.9	100.0	1,027.2	100.0	1,106.7	100.0	17,770.6

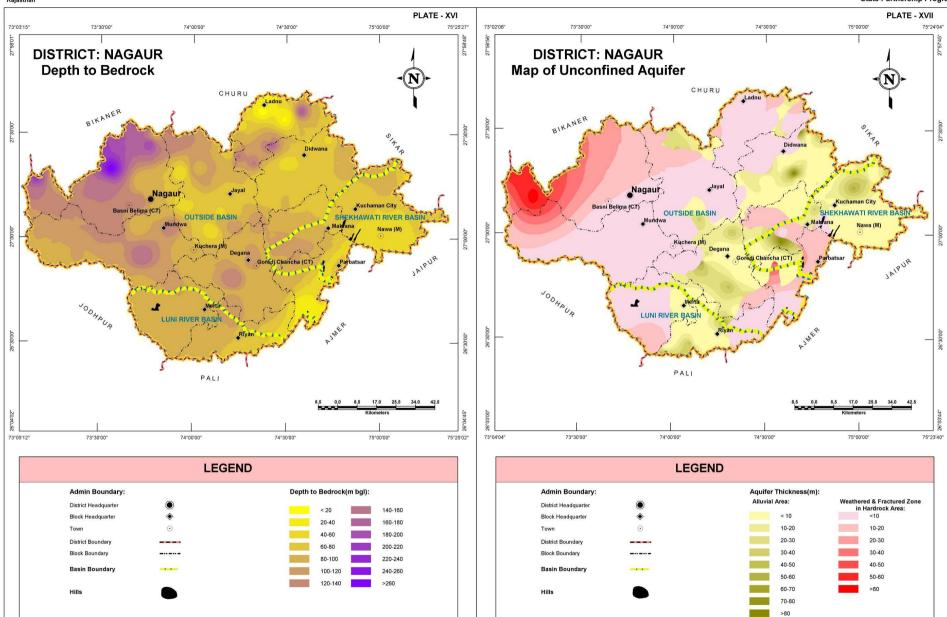
UNCONFINED AQUIFER

Alluvial areas:

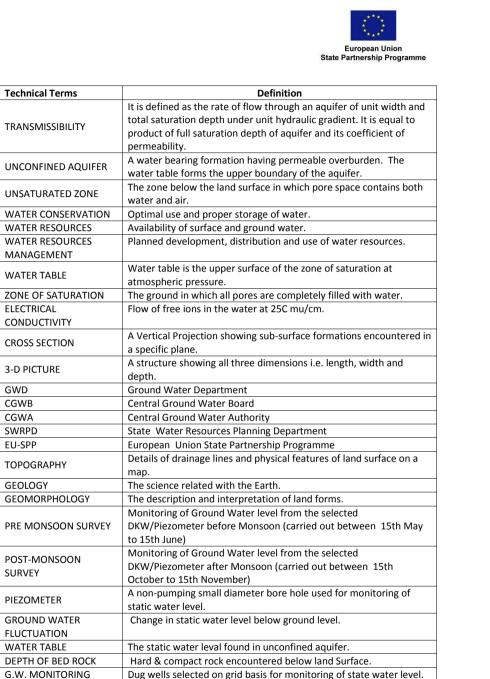
Alluvial material forms aquifers in most of northeastern and southeastern half of the district and also in the northern and southern parts of Jayal block. The thickness of unconfined aquifer varies from less than 10 m to about 90m with the thickest parts lying to the south of Makrana and the southeastern part of Didwana block. The general thickness of alluvial aquifers is however, upto 30m.

Unconfined				Blo	ck wise A	rea coverage	e(sq km)					Total
aquifer Thickness (m)	Degana	Didwana	Jayal	Kuchaman City	Ladnu	Makrana	Merta	Mundwa	Nagaur	Parbatsar	Riyan	Area (sq km)
< 10	402.9	740.0	206.7	1,120.1	43.0	371.1	238.9	-	-	259.0	442.0	3,823.7
10-20	397.7	259.2	162.5	267.8	75.9	171.2	69.2	-	-	38.3	111.7	1,553.5
20-30	273.4	60.3	137.7	100.5	2.4	61.0	0.1	-	-	15.6	62.6	713.6
30-40	85.0	31.5	8.0	64.2	-	32.7	-	-	-	4.5	66.9	292.8
40-50	13.0	20.1	-	27.8	-	23.7	-	-	-	1.0	14.5	100.2
50-60	3.0	12.4	-	3.9	-	16.9	-	-	-	0.2	2.3	38.7
60-70	-	7.2	-	-	-	12.7	-	-	-	-	-	19.9
70-80	-	4.3	-	-	-	12.3	-	-	-	-	-	16.6
> 80	-	1.6	-	-	-	1.7	-	-	-	-	-	3.3
Total	1,175.0	1,136.6	514.9	1,584.3	121.3	703.3	308.2	-	-	318.6	700.0	6,562.2

Hard rock areas:


Weathered, fractured and jointed rock formations occurring at shallower depths constitute good unconfined aquifers. Such zone ranges in thickness from less than 10m to about 70m. Western part of the district in Nagaur block has thickest zone of weathered/fractured hardrock where a thickness of more than 60m is seen whereas the rest of the blocks has moderate thickness of upto 30m.

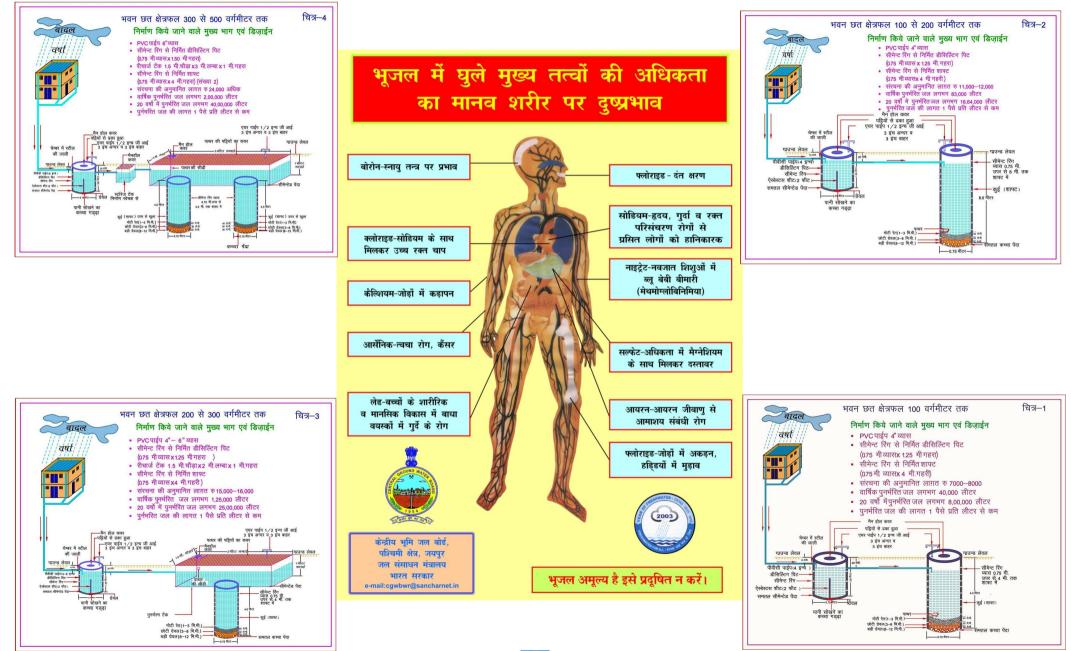
Unconfined				Bloc	k wise Are	a coverage (sq km)					Total
aquifer Thickness (m)	Degana	Didwana	Jayal	Kuchaman City	Ladnu	Makrana	Merta	Mundwa	Nagaur	Parbatsar	Riyan	Area (sq km)
<10	280.5	447.0	1,287.9	34.7	1,010.4	43.1	823.4	1,734.7	418.4	240.8	377.0	6,698.1
10-20	121.8	58.2	398.4	6.4	143.4	322.6	209.2	273.6	775.2	381.9	28.4	2,719.2
20-30	1.3	-	-	-	0.2	5.4	8.8	160.5	614.3	56.9	1.3	848.7
30-40	-	-	-	-	-	-	-	113.1	264.9	25.6	-	403.6
40-50	-	-	-	-	-	-	-	52.9	188.0	3.4	-	244.3
50-60	-	-	-	-	-	-	-	0.7	262.8	-	-	263.5
> 60	-	-	-	-	-	-	-	-	31.3	-	-	31.3
Total	403.6	505.2	1,686.3	41.1	1,154.0	371.1	1,041.4	2,335.5	2,554.9	708.6	406.7	11,208.4



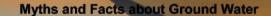
Glossary of terms

5. No.	Technical Terms	Definition	
1	AOLIJEER	A saturated geological formation which has good permeability to	
	AQUIFER	supply sufficient quantity of water to a Tube well, well or spring.	
2	ARID CLIMATE	Climate characterized by high evaporation and low precipitation.	
3	ARTIFICIAL RECHARGE	Addition of water to a ground water reservoir by man-made activity	
4	CLIMATE	The sum total of all atmospheric or meteorological influences	
		principally temperature, moisture, wind, pressure and evaporation	
		of a region.	
5	CONFINED AQUIFER	A water bearing strata having confined impermeable overburden. In	
		this aquifer, water levels represent the piezometric head.	
6	CONTAMINATION	Introduction of undesirable substance, normally not found in water,	
		which renders the water unfit for its intended use.	
7	DRAWDOWN	The drawdown is the depth by which water level is lowered.	
8	FRESH WATER	Water suitable for drinking purpose.	
9	GROUND WATER	Water found below the land surface.	
10	GROUND WATER BASIN	A hydro-geologic unit containing one large aquifer or several	
		connected and interrelated aquifers.	
11	GROUND WATER	The natural infiltration of surface water into the ground.	
	RECHARGE		
12	HARD WATER	The water which does not produce sufficient foam with soap.	
13	HYDRAULIC	A constant that serves as a measure of permeability of porous	
	CONDUCTIVITY	medium.	
14	HYDROGEOLOGY	The science related with the ground water.	
15	HUMID CLIMATE	The area having high moisture content.	
16	ISOHYET	A line of equal amount of rainfall.	
17	METEOROLOGY	Science of the atmosphere.	
18	PERCOLATION	It is flow through a porous substance.	
19	PERMEABILITY	The property or capacity of a soil or rock for transmitting water.	
20	рН	Value of hydrogen-ion concentration in water. Used as an indicator	
		of acidity (pH < 7) or alkalinity (pH > 7).	
21	PIEZOMETRIC HEAD	Elevation to which water will rise in a piezometers.	
22	RECHARGE	It is a natural or artificial process by which water is added from	
		outside to the aquifer.	
23	SAFE YIELD	Amount of water which can be extracted from ground water withou	
		producing undesirable effect.	
24	SALINITY	Concentration of dissolved salts.	
25	SEMI-ARID	An area is considered semiarid having annual rainfall between 10-20	
		inches.	
26	SEMI-CONFINED	Aquifer overlain and/or underlain by a relatively thin semi-pervious	
	AQUIFER	layer.	
27	SPECIFIC YIELD	Quantity of water which is released by a formation after it's	
		complete saturation.	
28	TOTAL DISSOLVED	Total weight of dissolved mineral constituents in water per unit	
	SOLIDS	volume (or weight) of water in the sample.	

Wind-blown sand deposits


S. No.

STATION


EOLIAN DEPOSITS

A A A KAR KAR AN AN

S No	Myths	Facts
1	What is Ground Water an underground lake a net work of underground rivers a bowl filled with water 	Water which occurs below the land in geological formations/rocks is Ground water
2	Ground Water occurs everywhere beneath the Land Surface	Not really, it depends on the nature of rock formation
3	There is a relationship between ground water and surface water	Not all the places. Near streams/rivers there is relation
4	Groundwater is not renewable resource	It is renewable source and every year it is being recharged through rain/applied irrigation etc
5	Ground water is unlimited and deeper you drill more discharge	It is limited to annual recharge from rain/applied irrigation. The discharge may not increase if you go deeper
6	Ground Water moves rapidly	The movement of ground water is very slow
7	Ground water pumped from wells is thousands of years old	Generally the ground water being tapped through wells is a few years old
8	If water taste good—it is safe to drink	It may have other chemicals e.g. fluoride, nitrates etc which are harmful
9	Water from free flowing tube wells is very pure	This water can also be contaminated so test before use
10	If I recharge my TW/DW/HP it will not benefit me	It will also benefit you and also adjoing wells
11	There is no static ground water resources in Rajasthan	Rajasthan is also having Static GW resources, and being tapped in most of areas as GW annual withdrawal is more than annual recharge
12	I cannot meet annual cooking and drinking water requirement by rain water harvesting	The water requirement for drinking and cooking is only 8 lit/day. You can harvest this water for family of 5 persons from roof top or paved area of 75 Sq m to meet annual requirement
13	You can increase ground water recharge	This can be done by harvesting the rain water and storing in sub surface reservoir (GW) by constructing the recharge structures
14	You cannot use abandoned TW/HP/DW for ground water recharge	These should be used as recharge structures as harvested rain water is directly put into GW reservoir
15	Putting waste near HP/TW will not cause any problem	Such actions will pollute wells and water

11

-

Rolta India Limited

Central & Registered Office Rolta Tower A, Rolta Technology Park, MIDC, Andheri (East), Mumbai - 400 093 Tel : +91 (22) 2926 6666, 3087 6543 Fax : +91 (22) 2836 5992 Email : indsales@rolta.com

www.rolta.com

.