

GOVERNMENT OF RAJASTHAN

SURVEY & RESEARCH

GROUND WATER DEPARTMENT

PALI

GROUND WATER RESOURCES OF

JALORE DISTRICT

PART - I

HYDROGEOLOGY

OFFICE OF THE SENIOR HYDROGEOLOGIST GROUND WATER DEPARTMENT (D.P.A.P.)
PALI

GROUND WATER RESOURCES OF JALORE DISTRICT RAJASTHAN.

PART-I = HYDROGEOLOGY

<u>BY</u>

ARUN HENRY
JUNIOR HYDROGEOLOGIST.

U.S.SAKTAWAT TECHNICAL ASSISTANT (HYDROGEOLOGY)

&

B.L.PALIWAL, SENIOR HYDROGEOLOGIST

OFFICE OF THE SENIOR HYDROGEOLOGIST.

GROUND WATER DEPARTMENT (D.P.A.P.)

PALI

AUGUST 1983.

CONTENTS

CHAPTER		PAGE NO	<u>).</u>
•	ABSTRACT	i - v	
I.	INTRODUCTION Purpose and scope History of survey's Acknowledgement	1 - 4	
II.	PHYSIOGRAPHY AND CLIMATE Location and extent Climate - Rainfall - Droug	5 - 13	3
III.	GENERAL GEDLOGY Stratigraphy i) Structure and tectonics ii) Study of geological sections	14 - 2	24
I.V.	HYDROGEOLOGY Younger alluvium Older alluvium Granites Rhyolite	25 - 3	32
V.	GROUND WATER Occurrence of ground water Ground water occurrence in different hydrogeological formations. Depth to water Yield of wells and Tubewell Ground water movement Ground water flow Fluctuation of ground water	.s	¥ 5
v I.	AQUIFER PROPERTIES Pumping test	46	
	CONCLUSION	47 - 3	50

- TABLE -I Showing land utilisation for Irrigation purposes in Jalore district.
- TABLE -II Showing details of crops grown in Jalore district.
- TABLE -III Geological succession of Jalore district.
- TABLE -IV Distribution of wells in different hydrogeological formations.
- TABLE -V Showing depth to water, discharge and total depth of open wells and tubewells in the Younger alluvium.
- TABLE -VI Showing depth to water, discharge and total depth of open wells and tubewells in the Older alluvium.
- TABLE -VII Showing depth to water, discharge and total depth of open wells and tubewells in the Granites.
- TABLE-VIII Showing depth to water, discharge and total depth of open wells and tubewells in the Rhyolite.
- TABLE -IX Showing depth to water associated with different hydrogeological units (Period June 1978).
- TABLE -X Showing yield of wells associated with different hydrogeological units.
- TABLE -XI Showing yield of tubewells associated with different hydrogeological units.
- TABLE -XII Showing range of water level fluctuation in different hydrogeological formation (in metres).
- TABLE -XIII Showing details of pumping test conducted in Jalore district.
- TABLE -XIV Showing aquifer parameters determined by different methods.

ILLUSTRATION

PLATE	-1	Hydrogeological map of Jalore
		district showing location of key wells,
		bore holes and elevation of basement.

- PLATE -2 Map showing depth to water in Jalore district (Period June and October, 1978)
- PLATE -3 Ground water contour map of Jalore district (Period June and October, 1978)

FIGURES

- FIGURE -1 Showing location of the study area.
- FIGURE -2 Section along Plader Chajjala.
- FIGURE -3 Section along Binjrol ka Golia-Dahiwa
- FIGURE -4 Section along Bautra Balwara.
- FIGURE -5 Section along Dahiwa Saila.
- FIGURE -6 Section along Bagora Elana
- FIGURE -7 Section along Sankad Sewari
- FIGURE -8 Section along Sewari Moderan
- FIGURE -9 Section along Paharpura-Umedpura
- FIGURE -10 Section along Rama Umedpura.
- FIGURE -11 Hydrographs showing fluctuations of water level in key wells in Granites and Rhyolite.
- FIGURE -12 Hydrographs showing fluctuations of water level in key wells in Older alluvium (North-east part)
- FIGURE -13 Hydrographs whowing fluctuations of water level in key wells in Older alluvium (North-west part)
- FIGURE -14 Hydrographs showing fuuctuations of water level in key wells in Older alluvium (South-west part)

FIGURE	-15	Hydrographs showing fluctuations of water level in key wells in Younger alluvium(Western part)
FIGURE	-16	Hydrographs showing fluctuations of water level in key wells in Younger alluvium (South-western part).
FIGURE	-17	Hydrographs showing monthly fluctuation of water level in piezometers in Granite.
FIGURE	-18	Hydrographs showing monthly fluctuation of water level in piezometers in Older alluvium.
FIGURE	-1 9	Hydrographs showing monthly fluctuation of water level in piezometers in Younger alluvium.

APPENDICES

APPENDIX	-1	Record of representative wells of Jalore district.
APPENDIX	- 2 a	Statement showing the details of exploratory drilling carried out in Jalore district during the period 1976-77 to 1982-83.
APPENDIX	-2b	Details of bore holes drilled by E.T.O.under U.N.D.P. in Jalore district (Period 1964-65)
APPENDIX	- 3	Details of tubewells constructed under exploitation programme (C.T.S. & D.P.A.P.) by Ground Water Departmentment (Period year 1974 - 1982)
APPENDIX	- 4	Details of tubewells drilled for Other agencies (Period 1972-1982)
APPENDIX	- 5	Record of water levels (in metres) as observed in key wells of Jalore district (Period 1976-1982).
APPENDIX	- 6	Record of water levels (in metres) as observed in key wells/piezometers monitored monthly (Period year 1980 to 1983)

ABSTRACT.

To study the ground water resources of Jalore district, detailed hydrogeological investigations under drought prone area programme were initiated in the year 1976 to evaluate the available ground water potential and also for precise delineation of fresh water aquifers in salinity infested areas as existing sources were not sufficient to cope up with the present and future water requirements.

Prior to these investigations individual

Panchayat Samities were surveyed for assessing ground

water surplus by the department and detailed investigation were also carried out in part of the district

by exploratory tubewell organisation under United

nations assistance programme. Based on the findings

of these investigations, a number of minor irrigation

schems and other development projects for exploitation

of ground water have been implemented.

Jalore district is located towards south-western part of Rajasthan and has an areal extent of 10640 sq.kms. District lies in the arid zone of Rajasthan with extreme of climate. The mean annual rainfall over Jalore Station is observed to be 379.86 mm(period 1901-1981)

Major part of the district is covered by extensive alluvial plains with a few scattered isolated hills and rugged hill ranges towards south-east.

Sand dunes are common to-pographic features in micensatern and western part. Geomorpholigically, the alluvial valley floor belongs to mature land scape system and both erosional and depositional land form units are found in the region. The area is well drained by Luni drainage system, all rivers in the area are ephemeral which flow in direct response to precipitation.

Present land use studies reveal that above 58% cultivable land has no irrigation facilities in the district. Out of total irrigated area, the area irrigated by wells, canals and other sources are 99.25%, 0.62% and 0.13% respectively. Bhinmal Tehsil has maximum cultivable and irrigated area where as minimum area falls under Ahore Tehsil. Soils of the area in general are deep uniformaly layered, fine, sorted sand on the dunes and coarse to medium textured on the plains. The soils in the district are poor in fertility as the nitrogen, phosphorus contents & proportion of organic matters are low.

The general geological succession has been prepared on the basis of variousbore holes drilled in the district. The rock units range in age from Pre-cambrian to Recent. Study of the geological sections and cor-relation of bore hole data indicate that basement abruptly deepens towards west of Saila - Sankad axis which may be due to some major dislocation in the area which is parallel to Pali -Sirohi lineament. In the bore holes drilled towards west of this axis, a sequence of sand, gravel and clays is encountered. The lower horizons of the sand, gravel and clay sequence resembles with Tertiary deposits, in the other area. Another dislocation having almost eastwest trend is deciphered, which runs along Jawai-Sukari river. From this section it appears that south-west part of the basin was sinking even during holocene period.

Hydrogeology of various aquifers has been studies from the sections of 1039 wells inventoried. Subsequently 189 key wells were selected on grid pattern, for recording seasonal water level fluctuations and collection of water samples. Another set of 38 key wells and 21 piezo-

meters were monitored monthly for closer and regular study of water level fluctuation. In all, 698 vertical electrical soundings along 41 sections and 178 spots were conducted during study period. Results obtained were used for deciding the sites for exploratory drilling and delineation of various aquifers.

On the basis of hydrogeological investigations and additional sub-surface information obtained from geo-electric surveys, 35 exploratory bore holes and 26 observation bore hole/piezometers were drilled to askertain the thickness and areal extent of different aquifers. Twelve pumping tests were conducted for determining the aquifer parameters.

Generally ground water occurs under unconfined and semiconfined conditions. Confined condition have also been observed in alluvial deposits and Tertiary formation(?) towards west and SSW part. At village Jodhawas, a free flowing conditions at the rate of 0.20 cubmic metres/hour has been observed.

Ground water movement in the district is from south-weast to north west in the south and east to west in the northern and western part. Slope of the water table is steep towards east of Saila-Sankad axis and

gental towards west of it, which shows the control of fault on the ground water movement.

Younger alluvium comprises of fine to coarse sand, gravel, and clays, their thickness varies from 20 metres to 65 metres. Ground water occurs under unconfined and semiconfined condition. Discharge of existing wells varies from 5 cubic metres/day to 620 cubic metres/day whereas y:ield of tubewells range from 129.6 cubic metres/day to 1344 cubic metres/day.

Major part of the area is covered by older alluvium and ground water occurs under water table, semi confined as well as in confined conditions. These formations comprises. Sandy loam, Kankar, coarse to fine sand and gravel with clay lenses and their thickness varies from 11.0 to 80 metres. Discharge of existing wells varies from 5 cubic metres/day to 480 cubic metres/day and of tubewell ranges between 27 cubic metres/day to 1072 cubic metres/day.

In granites and rhyolites ground water normally occurs under water table conditions. Discharge of existing wells in Granite formation varies from 15 cubic metres/day to 480 cubic metres/day whereas yield of tube wells ranges between 14.40 cubic metres/day and 736 cubic metres/day.

I INTRODUCTION

1.1 PURPOSE AND SCOPE:

The problem ofmeeting ever increasing demand of water for drinking and irrigation purpose have become many-fold due to fast increasing population urbanisation and industrialisation in Jalore district. The situation was becoming more grim due to frequent drought conditions. The surface water resources being limited the demands for ground water exploitation have been continuously increasing.

Based on the findings of semi-detailed hydrogeological investigations of the Jalore district conducted by the Ground Water Department and detailed investigation carried out in part of the district by Exploratory Tubb wells Organisation under U.N.assistance programme, a number of minor irrigation schemes and other development projects for exploitation of ground water have been implemented. As a consequence of these programmes, certain fresh water areas have been over exploited while vast tracts have remained untapped, mainly because of inadequate information regarding hydrogeological, hydrochemical characters of the aquifers and their areal extent and ground water storage.

Therefore, detailed hydrogeological investigations under Drought Prone Area Programme

(D.P.A.P.) were initiated from the year 1976-77 to evaluate the available ground water potential and also for precise delineation of fresh water aquifers in salinity infested areas of the district.

1.2 HISTORY OF SURVEYS.

The first few months were utilised for collection and interpretation of all available hydrogeological and geological litera twre and maps from various departments. These data were collected from the following agencies other than the Department-

- i) Central Ground Water Board (C.G.W.B.),
- ii) Geological Survey of India (G.S.I.),
- iii) Central Arid Zone Research Institute (C.A.Z.R.I.),

Central Arid Zone Research Institute and Explora tory Tube wall Organisation (presently Central Ground Water Board) had carried out detailed investigations in parts of the district. Central Arid Zone Research Institute covered Ahore, Jalore and Saila blocks and part of Central Juni Basin in respect of Geomorphylogy and land transformation. Ground Water Survey carried out by Exploratory Tubewell Organisation under United Nationa Assistance programme covered only 6750 sq.kms. area between latitude 25°00" and 25°30' and longitude 71°45' and 73°00' (45K and 45 of Survey of India Topographic Sheets) along Jawai-Sukri river valley in the Ahore, Jalore, Saila (Jalore district) partly Sumerpur (Pali district) and Siwana (Barmer district) blocks. Therefore, fairly good hydrogeological data were available for part of Jalore district. These data were used for deciding

various Geophysical Sections and sites for exploratory bore holes during detailed studies. Beside these studies, systematic hydrogeological reconnaissance and semi detailed hydrogeological investigations of different blocks of Jalore district were carried out by the department during the year 1969— to 1973. These studies enabled to delineate fresh and saline water areas and their ground water potential assessment. Based on the surplus of ground water potential calculated during these surveys, various minor irrigation schemes for exploitation of ground water have been proposed and implemented.

1.2(ii) Various data collected from other agencies along with data collected by the department during earlier phases of surveys were used for preparation of base maps, deciding geophysical sections and sites for exploratory bore holes.

Hydrogeological reconnaissance were started from May, 1976. Field operation included geological and hydrogeological studies, selection of representative wells, sampling of water for chemical analysis and meteorological data collection. These were followed by geoelectrical surveys and exploratory drillings. Details of reconnaissance survey were plotted on the base map of area having 1:2,50,000 scale. During reconnaissance 1039 wells were invontoried and 919 water samples were collected. Data so collected during reconnaissance were then used in projecting various hydrogeological and hydrochemical maps.

- 1.2(iii) Subsequently 855 wells were again monitored in 1973 out of which 189 key wells were finally selected on grid pattern which cover entire area and fairly represent various aquifers. These key wells were monitored for seasonal water level flucutations and sampling of water during June (Pre-monsoon), October (Post monsoon) and in March (Post irrigation), the seasonal observations were made during the year 1977 to 1981 and during June, 1982 respectively.
- 1.2(iv) Another set of 38 key wells and 21 piezometer/observation wells were monitored for recording monthly water level flucutation during June 1980 to Jan. 1981 but due to the shortage of funds for petrol, oil and lubricant, it was discontinued and again started from June, 1982 to Jan. 1983. These data have been utilised for projecting water level hydrographs.
- 1.2(v) During these investigations 41 sections and 162 spots were chosen for Geo-electric surveys. In all, 576 vertical electrical soundings along sections and 178 vertical electrical soundings on spots were conducted during 1976-77 to 1981-82. Results of Geo-electric surveys were used for deciding the sites for exploratory bore holes and delineation of various aquifers.
- 1.2(vi) On the basis of hydrogeological investigations and additional subsurface information obtained from geo-electrical survey, 35 exploratory bore holes and 26 observations bore holes/piezometers were drilled to ascertain the thickness and areal extent of different aquifers encountered in the area.

1.2(vii) Twelve pumping tests were conducted for determining the hydraulic parameters of different aquifers.

ACKNOWLEDGEMENT

Greatful thanks are due to Shri S.K.Das, the then Chief Engineer, Ground Water Department for taking keen interest in these investigations and providing necessary facilities during the course of these studies. Thanks are extended to Shri T.N.Mehra, Chief Engineer, Ground Water Department for giving all facilities for publishing the report. The authors wish to place on record them deep gratitude to Shri D.C.Sharma, Superintending Hydrogeologist Jodhpur for meticulously going through the manuscript and valuable suggestions and guidance during the field work and preparation of final report.

Thanks are also due to younger colleagues of the Pali Division forcompilation of data and helpful discussions.

Thanks are also extended to district administrations and other organisations and individual whose interest and help during these investigations made it possible to complet the work timely.

II.PHYSIOGRAPHY AND CLIMATE

2.1 LOCATION AND EXTENT:

Jalore district has an areal extent of 10,640 sq.kms. between latitudes 24°30' to 25°45' and longitude 71°7' to 73°6' (Fig.1) and is covered by the survey of India topographic sheet no. 45C,45D,45G & 400 & 40P. The Jalore district is located towards south-western portion of Rajasthan and primary boundaries are Luni river to the west, part of central Luni Easin to north, and it shares to common boundary with Gugrat State to the south and Sirohi and Pali Pistrict to south-east and east respectively.

The district has 613 villages, 2 major towns Jalore and Bhinmal, 4 tehsil head-quarters at Jalore, Ahore, Jaswantpura and Sanchore and 7 Panchayat Samiti headquarters at Jalore, Ahore, Saila, Bhinmal, Jaswantpura, Raniwara and Sanchore,

2.2 <u>CLIMATE - RAINFALL - DROUGHTS:</u>

District lies in the arid zone of Rajasthan with extremes of climate and high diurnal variation in temperatures. The highest maximum temperature 46,5°C over Jalore Station recorded on 18th June, 1979 while lowest maximum temperature 13.2°C observed on 31st January, 1976. The highest minimum temperature 36,6°C on 7th June, 1981 and lowest minimum 1.2°C on 29th Jan.,1973 was recorded respectively. The maximum 100% relative humadity was observed in rainy 6avs (period April,1972 to December,1981).

In the last 80 years of climatic history of Jalore, lowest annual rainfall (27.1mm) experienced in the year 1901 while highest annual

rainfall (849.6mm) has been recorded in 1973.

The mean annual rainfall over Jalore station is observed to be 379.86 mm (period 1901-1981). The departure and cummulative departure of annual rainfall reveal that most dry condition prevailed over the region upto 1978 while wet period observed during 1979 onward. Hence, this inferred that rainfall trend increasing in the region. The normal annual rainfall trend over Jalore district is increasing from WNW to ESE and it ranges from 35°mm to 45°mm. The climate and rainfall have been described in detail in the volume IV, Ground water resources of Jalore district.

2.3 PHYSIOGRAPHY, GEOMORPHOLOGY-DRAINAGE-LAND USE - SOILS:

Major part of the district consist of extensive alluvial plains with regged hill ranges occuring in the north-eastern (near Bhadrajun), central (Jalore & Israna) and south-east parts (Dorrag - Jaswantpura). These hill ranges are generally composed of Jalore granites, rhyolites with some admixture of granite in north-eastern part. hill ranges rise to maximum height of 991 metres above mean sea level in south-east near Jaswantpura, Apart from these hill ranges numerous other small isolated hills are spread over the extensive alluvial plains. The more prominent of these are at Kishangarh (660 metres), Panchota (582 metres), Takhatpura (508 metres) in north, central and eastern part and Ratnagar (477 metres), Ranawa.. - Bhakar (404 metres), Kolar (528 metres) and Lakhawas (384 metres) in south. The elevation of the area ranges from 609.60 metres above mean sea level in the east to 76.20 metres above mean sea level in the west at the confluence of the Luni and Jawai - Sukari rivers. The average elevation of the Valley floor ranges from 60.96 metres to 213.36 metres above mean sea level. Generally, terrain slopes towards west. the eastern part of area, the hill tops are normally shaped by weathering which has given rise to tors and boulders of various shap as and sizes while plain covered with sand dunes are a common topographic features in mid eastern and western part.

2.3(i) Geomorphologically, the alluvial valley floor belongs to mature land scape system and present land form units are the product of the past

fluvial erosion and sub-areal denudation. As a result, hard resistant rock masses occur as steep hill ranges surrounded by extensive aggraded alluvial plaints. Thus, these aggraded alluvial plains were formed by well developed drainage system prevailing in pleistocene and sub-recent times. The fluvial cycle was then followed by arid cycle and as a result of this process sand dunes, sandy plains and deflation hollws have been formed, Wind erosion became a predominent process in the region due to change in climatic cycle. The occassional floods in the present river courses have deposited fluviatile sediments on their margins.

Therefore, both erosional and depositional land form units found in the region are

(1) Residual rugged hills (2) Upper piedmont zone

(3) Lower piedment plain (bajada) (4) Aggraded older alluvial plains (5) Sandy plains and dunes (6) Recent flood plains (Younger alluvium) (7) Graded river bed and (8) Shallow saline depressions. Out of 8 geomorphic units, only 1 and 2 are the erosional land form units while 3 to 8 are deposional units and have significant direct bearing on hydrogeological conditions.

2.3(ii) The area is well drained by the Luni drainage system, originating from the Aravalli hill ranges. The main rivers in the area, the Jawai - Sukri, Bandi and Sagi are tributaries to the Luni river, while Bargaonra river in south of the district flows to Gujarat. All rivers are ephemeral with graded and meandering courses and wide flood plains. Besides these, there are net work of small drainage channels emanating from local hills which flow to considerable distance during monsoon period and then, eventually

are lost in aggraded alluvial plains. Additionally there are in-numerable old channels buried under wind blown sand. Jawai river initially flows east to north-west upto Paharpura and then follows a westerly course. While river Bandi & Sagi flow from south-east, north west and then follow a westerly course along general topographic slope. All these rivers are coarse to medium textured and develop sub-dendritic drainage pattern in the upper part which become parallel in the middle and lower part Radial drainage pattern have developed at Bhadrajun, Isarana and Lakhawas due to local structural high or headward erosion. The beds of Jawai river form distinct land unit which are absolutely graded and are filled up by their detritues consisting of assorted material. The average width of the course is about 800 metres with large and small sand bars. average length and width of these sand bars are 400 metres and 1.5 metres respectively. In these beds the kankar zone is found at 1 to 2 metres depth.

2.3(iii) To have a review of present land use in the district, land use data of all the 4 Tehsil namely Ahore, Jalore, Bhinmal and Sanchore were collected. The agricultural statistics indicate that 86.97% area of the total land is suitable for irrigation and out of this 18.67% area is irrigated in the district. It is apparent from the above facts that about 58% cultivable land has no irrigation facilities. Out of the total irrigated area, the area irrigated by wells, canals and by other sources are 99.25%, 0.62% and 0.13% respectively.

The agricultural statistics of the district during the year 1980-1981 are as follows:-

1.	Total area of the district	10,64,000	hectors.
2.	Total uncultivable area.	1,20,133	80
3.	Total land suitable for irrigation.	9,18,852	и
4.	Total area of forest	17,459	**
4.1	Total area of hills	7,556	**
5.	Total irrigated land.	1,70,671	48
6.	Total area irrigated by wells.	1,69,385	ti
7.	Total area irrigated by tanks.	Nil	
8.	Total area irrigated by canals.	1,055	11
9.	Total area irrigated by other sources.	231	**
10.	Total population of the district (1981 census).	9,03,073	1f
11.	Total No. of cattles (1977)	13,30,534	

The other details of agricultural statistics are tabulated in Table-I & II.

TABLE-I

SHOWING LAND UTILISATION FOR IRRIGATION PURPOSES IN JALORE DISTRICT PERIOD 1980-81

S. S.	*^	il Total culti- Area under irrigation By other Total area vable area By wells. By canals. sources. irrigated in heacters.	Area und By wells	Area under irrigation By wells. By canals.	By other sources.	Total area irrigated in heacters.
7.	1. AHORE	1,63,750	26,928	1,63,750 26,928 607+ 52 27,587	52	27,587
2.	JALORE	1,95,396	45,677	ı	24	45,701
ب	BHINMAL	2,85,475	61,298	448	155	61,901
4.	SANCHORE	2,74,231	35,482	1	ı	35,482
			1 • 1 • 1 • 1	- - - - - - - - - -	1.1.1.1.1.1	1.1.1.1.1.
	TOTAL:	9,18,852	1,69,385	1,055	231	1,70,671

TABLE-II
SHOWING DETAILS OF CROPS GROWN IN JALORE DISTRICT.

s.	Name of			HECTARE		
No,	crops grown.	AHORE TEHSIL	BHINMAL TEHSIL	JALORE TEHSIL		TOTAL AREA IN HECTARE
1.	2.	3.	4.	5.	6.	7.
MAI	N CROPS					
2. 3. 4. 5.	Barley Bajra Corn Jwar Rice Wheat	1084 39429 200 25 -	305 119949 49 815 36 12045	262 71619 242 97 -	521 127427 1 119 - 5395	2172 358 424 492 1056 36 40060
9.	SES Chola Gram Moth. Mung.	17 4834 58 6078	198 25 279 11254	24 213 7 3555	41 924 1384	280 5072 1268 22271
11. 12. 13. 14. 15.	SEEDS Alsi Arandi Ground-nut Mustered oil Raira. Taramira. Til seed.	2 52 2 27198 9705 20062	783 - 105 30881 15694 5746	- 36 2 8 37321 742 3549	942 25 18445 16319 292	2 1813 4 138 113845 42460 29599
18. 19. 20. 21. 22. 23. 24. 25. 25. 27.	Dhania Jhamba Jhira Mirch. Isabgol. Tobacco Methi Pattato Ambari Cotton Khar	2 181 99 85 14 1701 1 4 1454 15035	3775 152 2571 - 24 11 - 10 36892	3367 179 441 58 - 18 - 109 30731	21 9910 23 468 - - - 43142	23 3367 14045 715 3182 14 1743 12 4 1573 125800

The Table-I shows that maximum cultivable and irrigated area is in Bhinmal Tehsil and minimum area under cultivation and irrigation in Ahore Tehsil Main source of irrigation is through wells, canal irrigation is exclusively restricted to Ahore and Bhinmal Tehsils where as in Sanchore Tehsil wells are the only source of irrigation. Over all 18.67% of the cultivable area is irrigated in Jalore district.

It is apparent from Table-II that 28 types of crops are usually grown in the district. Wheat, Raida, Bajra, Til, Moong, Tara-mera, Barley, Jera, Khar are sown in major part of the district. Rice crops is sown in small part of Bhinmal Tehsil, Alsi and Tobacco crops are grown only in Ahore Tehsil, Other important crops grown in the district are Gram, Mustard, Castor, Methi, Maize, Jawar, Moth, Chilly and Cotton. Bajra is the main Kharif crop covers maximum area of Sanchore Tehsil, Barley, Gram, Alsi, Tobacco, Methi, Til, Ground-nut and Cotton are grown in Ahore, Tehsil and Raida, Jhamba, Maize, Ground-nut, Chilly, are grown in Jalore Tehsil, Wheat, Mustard, Potato, Jawar, Moong, Gram are grown in Bhinmal Tehsil, Castor, Tara-mera, Dhania, Jera, Bajra, Moth, Khar are grown in Sanchore Tehsil.

2.3(iv) Systematic soil survey of the district has not been carried out so far. However, detailed reconnaissance studies on the nature of the soils in Ahore, Jalore and Saila blocks were carried out by the

Central Arid Zone Research Institute. Detailed soil survey of about 38 water sheds covering an area of 59,612 hectors has been done by soil survey division of State Agriculture Department.

On the basis of details available, the soils in the district can be classified into 6 associations taking into consideration the morphology of the soil profiles, pH value and fertility aspect etc.

The details are as follows:-

ASSOCIATION. CHARACTERISTICS & OCCUPATION 1. Sandy aeolian soils with Confined mostly to the sand dunes and hummock. north west of Jalore on both side of Sukari river. 2. Sand to loamy sand. Coarse textured soils, around Jalore hills and covering north-eastern region. 3. Sandy loam to loam Coarse to medium textured soils. 4. Clay loam to clay with Soils of alluvial nature drainage impendence. having medium to heavy texture, occur in valley fills and as isolated patches in stream channels and low lying areas to south of Sukari river. Identified in upper piedmont 5. Shallow, stony, gravelly soils. plains along the foot hill slopes. 6. Dissected sand dunes. Deep fine sand forming ravines and gullies, predo-minantly in the northern part of the district.

It is apparent from the details given above that soils of the area in general are deep, uniformerly layered, fine, sorted sand on the dunes and coarse to medium textured on the plains. Deep to very deep, medium heavy textured soils occupy only small area along the valley fills and river channels.

Soils along the hill slopes are mostly shallow consisting of weathered rock and calcareous gravelly materials. Soils with weak, sub-angular blocky structure having fair water retention capacity with moderate permeability were identified in flat and undulating plains, while soils on dunes are loose and structure less with low water retaintion capacity and high permeability. Generally, soils are calcareous with CaCo₃ ranging from traces to almost 4% on the surface and it increases upto 8 to 20% with in depth of 75 to 100 cm. Therefore, in general, the soils in the district are poor in fertility as the nitrogen, phosphorus contents, proportion of organic matter are low. However, potassium content is moderate to high.

III. GENERAL GEOLOGY

3.1 STRATIGRAPHY

Latouche (1902), Heron(1932), Auden(1933), Coulsen (1933), Taylor(1955) and Pascoe (1959) builtup the geology and stratigraphy of the area and laid the foundation in the form of basis work. Since then a number of workers from different institutions have contributed to the geology of the area. The drilling work under the United Nation Development Programme for locating aquifers has also revealed the nature of Palaeozoic strata. Accordingly, Jalore district forms the extreme south western continuation of dissected precambrian plataue of the Aravalli ranges. Brokem and scattered hills occur as prominent land marks above the desert sand and river alluvium.

In the central and eastern part, the Quaternary and pleistocene deposits rest directly on the late palaeozoic formations which are crystalline instrusives and volcanics. The volcanics appear to rest over the instrusives. Such junctions are observed near village Nun (25°10': 72°30'45") and Bhadrajun (25°36': 72°52'30") and form a capping over crystalline rocks, indicating that volcanic activity took place much later than the igneous intrusives. In this part, no other formations occur inbetween the late palaeozoic and quaternaries, which indicate that the region stood above sea level after the formation of igneous and volcanic rocks. These rocks were subjected to weathering and erosion due to which the Quaternary formations have deposited.

The general Geolocial succession in the area is as follows:-

Table-III GEOLOGICAL SUCCESSION OF JALORE DISTRICT

Era.	Period	Systems.
Quaternary.	Recent and sub recent to Pleistocene.	Aeolian sediments Alluvium younger Alluvium older.
Tertiary.		Consolidated clays and coarse to medium sand with shale fragments.
Late Pala- eozcic to	Post Delhi	Malani volcanics Jalore granites Erinpura granites
Pre cambr à an.	Delhi super group.	Meta-sediments.

3.1(a) META SEDIMENTARY ROCKS:

Cheest formations are represented by meta sedimentary rocks such as schist, limestone, marble and quartzites belonging to Delhi super group, which occur as inclusion with in the dominent granites and rhyolities. Pandants of limestone have been indentified near Bhadrajun and schist has been recorded in well section located between Bhadrajun and Malgarh.

3.1(b)(i) ERINPURA GRANITE:

Erinpura granites, the oldest intrusive igneous rocks exposed in southern part of Bhinmal are essentially gray coloured, medium to coarse grained mainly composed of quartz, potash feldspar with biotite and horn blends as minor constitutent. These are weathered, fractured and well jointed.

3.1(b) (ii) JALORE GRANITES:

Jalore granite belongs to Malani suite of igneous rocks. These are generally fine to coarse grained with phenocryst of feldspar. The Jalore granite is pink in colour composed of quartz orthoclare feldspar with some plagioclass feldspar, biotite and aegirine. Biotite in Jalore granite is the most abundant mineral amongst the ferromognesion minerals. The biotite has generally altered to chlorite, leaving behind greenish patches and it appears that this granite range in composition from granite to granodiorite.

These granites are considered to be intrusive in rocks of Delhi system, and occur in the form of large bosses. Joints are well developed in the Jalore granite. These joints are vertical, angular and jorizontal, the strike frequency of the joints is more towards east and west. The topography of the region and the development of the drainage system are controlled by these joint systems. The vertical joints are good conduits of ground water movement while the angular joints are not much effective conduits.

3.1(b)(iii)MALANI VOLCANICS:

Rock types of this group consist of rhyolites associated with agglomerate, volcanic ash, felsites, intercalated with acid tuffs and pyroclastic materials. Jalore and Israna hill-ocks are partly composed or Malani volcanies. These rocks also exhibit well patterned joints which show a tendancy of becoming tight with depth. At places, it shows

obscure bedding planes which are probably developed due tostresses operating during cooling of magma.

3.1(c) TERTIARY FORMATIONS:

Thick layers of buff to grayish, clays, silts with intercalaction of medium to coarse sand and gravel are encountered in exploratory bore holes drilled at Batera, Plader, degaon, Chajjala,
Jodhawas, Binjrol-ka-golia and Dahiwa towards western part of the district. The clays are sticky, variagated and occur as dissected lenses. The market horizon is identified as friable shale fragments with medium to coarse sand brown to reddish in colour which is encountered at different depth during drilling. The sands are medium to coarse with gravel horizons subangular to subrounded and fresh in appearance.

3.1(d) QUATERNARY ALLUVIAL DEPOSITS:

These forms the most significant lighological unit in the region. These consists of aeolian deposits and valley fills. These sediments are broadly classified as (i) Wind blown sands, (ii) Younger alluvium and (iii) Older alluvium.

3.1(d)(i) OLDER ALLUVIUM: - occupies large area of the district and is identified in the form of predment alluvial sediments and high river terrace deposits. Piedment alluvial sediments are located along the slopes of the Jalore, Israna and Other granite hills as alluvial fans and cones. These consist of unsorted disintegrated rock fragments, occumulated as a result of weathering, gravel, sand with high clay content. High river terrace

deposits cover entire area between the piedmont plains and low terrace deposits. These deposits are identified between Khari-Bandi river, north of Jawai - Sukari rivers between Dangara and Dadhal, These sediments consists of an upper layer of sandy loam, kankar and lower layer of medium to fine sand and gravel with minor silt.

- spread lithological unit and occurs in the form of river flood deposits and low terrace deposits confined to the present and past drainage channels. These are heterogeneous sediments comprising of unconsolidated sand, gravel and itercalated clay and silt beds. The extent and thickness of these deposits are highly veriable. The sand grains, gravels, pebbles and cobbles are practically, subrounded to rounded in shape. Better sorting of sediments is found in river flood deposits as compared to low terrace deposits. In fact, it is difficult to separate them in the field. These deposits are well identified on both sides of the Jawai Sukari river channel.
- 3.1(d)(iii) WIND BLOWN SANDS are the recent aeolian deposits in the district. The occurrence of sand dunes is more pronounced in the mid central and north-western part of the area. These blown sands are generally non calcareous, though calcareous in nature at few places and are fine to medium grained

3.2(i) <u>STRUCTURE AND TECTONICS</u>

The structure of the area is difficult to dicipher due to thick deposition of sand and alluvial sediments. The principal structure are intermontane valley, depressions and large basins which have developed due to the igneous and volcanic rock basement. These basins or depressions are now filled up with Quaternary alluvial formation in the eastern part. However, correlation of bore hole data indicates that the depth to basement suddenly increases towards west of Saila - Sankad axis. Bore hole drilled towards west of this axis have not encountered basement upto 300 metres depth. Towards, lower part of these bore holes, the sequence of sand, gravel and clays is encountered which resembles Tertiary deposits in other areas. The sudden deepening of basement can be explained on the basis of some major fault in the area which is paralled to Pali - Sirohi lineament (NNE -SSW). Another xx dislocation having almost E-W trend is diciphered from geological sections along Pladar -Chajjala and Binjrol ka golia - Dahiwa. these sections, it appear that, south western part of the basin was sinking even during holocene period.

3.2(ii) STUDY OF GEOLOGICAL SECTIONS:

To decipher the sub surface geology, the lateral extension of different stratigraphic horizons, structural and tectonic features associated with them, few geological cross sections have been prepared on the basis of bore hole records. The bore holes drilled under detail hydrogeological investigation by Ground Water Department and the bore holes drilled under United Nations assistance programme (ETO) have been taken into consideration.

1. PLADAR A -MEDA-ARNAI-BINJROL-ka-GOLIA-JODHAWAS-BATERA-CHAJJALA SECTION:

This section is located at eastern side of Sanchore village and runs approximately north-The main stratigraphic horizons encountered in the bore holes are fine to medium sand and medium to coarse sand with alternate bands of clay. The clay acquires maximum thickness between Arnai and Binjrol ka Golia. The lithologs of the bore holes reveal the presence of peculiar horizon which is mainly composed of medium to coarse sand and fragment of shale with minor amount of clay. This horizon has been assumed as the marker horizon between Quaternary and Tertiary formation(?). The depth of occurrence of the Tertiary horizons in the bore holes of Pladar, Meda, Arnai, Binjrol ka Golia, Jodhawas and Batera were - 170 metres, 156 metres, 127 metres 134 metres, 122 metres and 146 metres respectively. However, in the Chajjala bore hole this horizon was encountered at shallow depth i.e. at 29.0 metres. This sudden uplift of the horizons can be interpreted by major fault in region, which probably runs along Sukri river having approximately east-west trend Due to this fault, the northern portion from the Sukri river, is at a higher elevation in comparision to southern portion.

2. BINJROL KA GOLIA-JODHAWAS-DUMARIA-DADHAL-ALWARA-DAHIWA SECTION:

This section is located in the NW of Bhinmal and runs almost NE-SW. Section exhibits the depth of marker horizon of tertiary formation in the

bore hole drilled at Binjrol ka golia, Jodhawas, Dumaria-Dadhal-Alwara and Dahiwa, Tertiary horizons encountered at shallower depth in the bore hole at Alwara (-14 metres) and Dahiwa (-0met) as compared to Binjrol ka golia (-134 metres) Jodhawas (-122 metres) Dumaria (-122 metres) and Dadhal (-126 metres). Upliftment of these horizons in the NW part and basement encountered at 272 metres depth further confirms the fault in the region.

3. BAUTRA-KUABER-BALWARA SECTION:

This section is located towards northern side of Saila and runs in a east-west direction approximately. The main stratigraphic horizons encountered in the bore holes were sand medium to coarse. Sand coarse with clay and gravel with fine to medium sand. The amount of clay continuously increase in the south-western direction of the section and acquires a maximum thickness in the bore hole at Bautra with few horizons of clean gravel at depth of 220 metres. The drilling depth of these bore holes were 290.0 metres, 221.0 metres and 127.0 metres respectively. Basement was encountered in Kuaber and Balwara bore holes and in Bautra basement was not encountered upto depth of 290.0 metres.

The section reveal that the depth to basement increases in the south-western direction. The depth of basement suddenly increased from 127.0 metres at Balwara to 221.0 metres at Kuaber and it is not encountered at Bautra upto 290.0 metres. This sudden deepening of the basement can be explained on the basis of major lineament runs along Sayla-Sankad axis which is parallel to Pali-Sirohi lineament(NNE-SSW)

4. DAHIWA-BAUTRA -SAILA SECTION:

This section is located towards west of Jalore town and runs in east souch-east to W.north-west direction. The main stratigraphic horizons encountered in the bore holes were thick sequence of clay with few horizons of gravel and coarse to medium sand. The gravel horizons encountered in the Dahiwa bore holes were thick which ultimately pinch out in the south-east. However, the clay horizons is prominent in all the three bore holes. In the litholog of Dahiwa bore hole occurrance of shale fragments at depth of 119.0 metres marks the top of tertiary sequence. Basement was enconfined in the Dahiwa-II bore hole at a depth of 272 metres below land surface.

5. BAGORA - DADHAL -GOLIA - SAILA - ELANA SECTION:

This section extends along northeastern and western side of the Saila village. It has an almost east-west trend.

The section reveals that the thickness of the alluvium increases from east-west as the basement was encountered in the bore hole of Elana at the depth of 174.95 metres and it was not encountered in the other bore holes upto the depth 175.50 metres, 124.66 metres, 220.98 metres and 195.07 metres, at Saila Golia, Dadhal and Bagora respectively. The coarse sand and gravel horizons have been encountered as lenses with in clays. The horizons of fine to medium sand encountered in the bore holes upto a few imetres depth only. However the percentage of clay increase in the eastern portion of the section when the gravel

horizon almost pinched out and amount of coarse sediment is also reduced.

6. SANKAD-BIGAON-PUNASA -SEWARI SECTION:
This sections runs along north-south
axis towards west of Bhinmal village.

The main stratigraphic horizons encountered in the bore holes are sand medium to coarse. horizons intercalated with thick clay bands and coarse sediment. This sequence of fine sand was encountered in the bore hole of Punasa. However, this horizons was not encountered in the bore holes at Sewari and Digaon. The amount of clay also reduce and became almost negligible in Punasa and Digaon bore holes. Deeper horizons in the bore holes of Digaon and Punasa encounter clean and coarse gravel. Sediments which suggests fluvialite mode of deposition. The drilling depth of Bigaon, Punasa and Sewari Bore holes were 285.0 metres, 300.00 metres and 210.62 metres respectively. In all the three exploratory bore holes basement was not encountered.

7. SEWARI - DASPA - MODERAN SECTION:

This section is located in north of Bhinmal and runs paralled to ENE-WSW direction. The
main stratigraphic horizons encountered in the bore
holes were medium to coarse sand and gravel with
alternate bands of clay. The amount of clay reduces
from Sewari to Daspa and the amount of coarse sediment
increases towards east.

8. PAHARPURA - NAWA KHERA - BHAINSWARA GUDA - BALOTAN - UMMEDPURA SECTION:
This section is located towards north
east of Jalore and runs parallel to west-north-west

to east - south- east direction. The main stratigraphic horizons encountered in the bore holes were
fine to medium sand, coarse sand intermixed with
gravel. At the base thick sequence of clay was
encountered. The basement was encountered in the
Bhainswara-Guda-Balotan and Ummedpura bore holes
at the depth of 70.0 metres, 86.0 metres and 81.0
metres respectively. However, basement was not
encountered in the Nawakhera and Paharpura bore
holes upto the depth of 85.96 metres and 77.72 metres
respectively. The amount of clay reduces from
Ummedpura to Paharpura in section simultaneously
the sediments became coarse and thickness of the
coarse sediment increases.

9. RAMA - JAITPUR - JOGNI - UMMEDPURA SECTION:

This section is located at western side of Bhadrajun and runs in a north-south direction. The lithologs of the bore holes revealed that the statigraphic horizons mainly comprise of clay and kankar except at a few places where clear horizons of gravel and kankar were encountered. The basement was encountered in all the three bore holes at 53.0 metres, 72.0 metres and 81.0 metres respectively. The depth to basement is deeper in Ummedpura bore hole as compared to Jaitpura, Jogni and Rama where basement was encountered at shallow depth.

IV. HYDROGEOLOGY

Hydrogeology of phreatic aquifers has been studies from the sections of 189 key wells selected on grid pattern. Hydrogeological data in terms of depth, diameter, yield of wells, depth to water, lithological formation encountered below water level, mode of operation, command area of well and cropping pattern etc. were collected and analysed. Water samples from these wells have been collected to study the hydrochemical characteristics of ground water.

Alluvium is the most extensive and prominent water bearing formation occuring along river courses and wide spread valley fills. It overlies the Jalore granite and malani volcanics in major portion of the district, but towards west, these over lie unclassified Tertiary formations. Generally Tertiary formations do not form good aquifer as they are mostly clayey with intercalations of sand and gravel. However, occassionally thick gravel horizons have been encountered in the bore hole of Pladar, Binjrol ka Golia, Jodhawas and Alwara. These gravel beds form productive ground water horizons in Tertiaries, but the quality of water varies from moderately saline to saline. The pre cambrian formations occupying 5 to 6% area have very little scope for ground water development, except for isolated and restricted drinking water supplies where the quaity of water is suitable.

The data of 189 key wells, which fairly represent various aquifers in the area have been used for study of mode of occurrence, quality and quantity

of ground water. Table-IV sumrised distribution of wells monitored in different blocks and different water bearing fomrmations of the district.

<u>Table-IV</u>

<u>Distribution of wells in different hydrogeological</u>
<u>formations</u>

S.No.	Name of	HYDROG:	EOLOGICAL	FORMATION		
	block.	Younger alluvium.	Older alluvium	Rhyolite	Granite	Total
1.	Ahore	4	20	-	3	27
2.	Bhinmal	8	17	-	1 .	26
3.	Jalore	2	12	etin.	4	18
4.	Jaswantpura	***	9	→	8	17
5.	Raniwara	10	9	3	5	27
6.	Sanchore	17	32	i 		49
7.	Saila	10	15	-	-	25
	Total	51	114	3	21	189

Water bearing properties of these formations have been discussed by classifying them into four hydrogeological units. These units are as follows:-PHYSICAL CHARACTER 1. Younger alluvium Comprising of loosely consolidated * to unconsolidated stream laid deposits. Unconsolidated to semiconsolidated Older alluvium. sand & gravel with minor amount of silt clay and kankar. Weathered, fractured & well jointed. 3. Granites. Rhyolites. Hard & Compact with minor amount of fractures.

The distribution of hydrogeological units is shown on hydrogeological map Pla tel and hydrogeological data of key wells has been given in Appendix-1. The details of exploratory bore holes drilled by Ground Water Department, by Exploratory Tubewell Organisation is appended in Appendix 2a and 2b where-as production tubewells drilled for cultivators given in Appendix-3.

4.1 YOUNGER ALLUVIUM:

In all 51 well sections tapping younger alluvium were examined during the survey. This formation is confirmed along river coarses and estreme south-western part of the district. The thickness of the younger alluvium gradually increases towards western portion and acquire a maximum thickness in run area i.e. south western part of the district.

The depth to water in the wells tapping younger alluvium varies from 0.82 metres to 15.65 metres and the average depth to water is 5.98 metres below ground level. The depth of open wells in this formation ranges from 2.70 metres to 26.88 metres. The discharge of existing wells varies from 5.0 cubic metres/day to 620.0 cubic metres/day and the average discharge is 145.21 cubic metres/day.

To determine the extent and saturated thickness and hydrologic parametres 8 exploratory bore holes were drilled. It reveals that the bore holes drilled near rivers have greater thickness of younger alluvium

The discharge of the tubewells drilled during investigation varies from 129.6 cubic metres/day to 1344.0 cubic metres/day in the younger alluvium.

Two pumping tests were conducted to determine the hydrological paramters of aquifer. The transmissivity (T) and storage coefficient (S) were calculated by different methods. The transmissivity varies from 151 metres $\frac{2}{8}$ day to 5427 metres 2 day. The storage coefficient varies from 7.7x10⁻⁴ to 8.77x10⁻⁴

Table-V

Showing depth to water, discharge and total depth of open wells and tubewells in the younger alluvium.

o. Properties.			Aver- age.			Av- er- age
Depth to water level in metres.	0.82	15.65	5.98	2.15	25.0	9.41
Discharge in cubic metres/day	5	620	145.2	129.6	1344.0	681.7
Total depth in metres.	2.70	26.85	10.8	30.0	305.0	116.56
	level in metres. Discharge in cubic metres/day Total depth in	Mini- mum. Depth to water level in metres. 0.82 Discharge in cubic metres/day 5 Total depth in	Mini- Maxi- mum. mum. Depth to water level in metres. 0.82 15.65 Discharge in cubic metres/day 5 620 Total depth in	Mini- Maxi- age. mum. mum. Depth to water level in metres. 0.82 15.65 5.98 Discharge in cubic metres/day 5 620 145.2 Total depth in	Mini- Maxi- age. Mini- mum. mum. Depth to water level in metres. 0.82 15.65 5.98 2.15 Discharge in cubic metres/day 5 620 145.2 129.6 Total depth in	Mini- Maxi- age. Mini- Maxi- mum. mum. mum. mum. mum. Depth to water level in metres. 0.82 15.65 5.98 2.15 25.0 Discharge in cubic metres/day 5 620 145.2 129.6 1344.0 Total depth in

4.2 OLDER ALLUVIUM.

In all 114 well sections tapping older alluvium were examined during survey. This formation covers the major part of the area. The thickness of the older alluvium increases in the south-west and western side of the district.

The depth to water in the wells tapping older alluvium varies from 1.00 to 45.00 metres and the average water level is 11.40 metres below ground level.

The depth of open wells in this unit varies from 2.90 to 73.10 metres. The discharge of existing wells varies from 5 cubic metres to 480 cubic metres/day and

and the average discharge is 155.40 cubic metres/day. The discharge of the wells is mainly controlled by nature of sediments that is, coarseness finemess and clay content.

To determine the extent, saturated thickness and hydrologic parameters 27 exploratory bore holes were drilled in this formation during the course of present studies. It reveals that the thickness of alluvium increases west ward. The discharge of the tubewells varies from 27 cubic metres/ day to 1072 cubic metres/ day in the older alluvium.

In all six pumping tests were conducted by the division to decipher the hydrogeological parameter of aquifer. The transmissivity(T) and storage coefficient(S) were calculated by different methods. The transmissivity varies from 44.0 metres 2 /day to 1013 metres 2 /day. The storage coefficient varies from 1.27×10^{-2} to 9.65×10^{-4}

Table-VI
Showing depth to water, discharge and total depth of open wells and tubewells in the older alluvium.

S.N	No. Properties.		wells Maxi- mmm.	Ave- rage		wells Maxi- mum.	Ave- rage.
1.	Depth to water level in metres.	1.0	45.0	11.40	2,80	49.50	13.65
2.	Discharge in cubic metres/day	5.0	480	155.40	27.0	1072 5	
3.	Total depth in metres.	2.90	73.10	20.01	23.0		65.0

4.3 GRANITE:

21 wells séctions tapping granites were examined during survey. It is exposed in the well sections in the south-eastern, eastern and north-eastern part of the district around Jaswantpura Ladermer-Punakala and Golwara-Dadoki-Vandar axis, Siyana-Mora uparla and Kaonla-Rundmal ki dhani respectively and also at an isolated patch between Mandoli-Akoli section. Granites are overlain by thin alluvial cover which increases towards west. These are usually fractured and jointed while weathering is confined generally, to upper few metres of the formation. Extent of weathered zone depends on topography of the area and nature of granites. Depth to water in the wells tapping granite varies from 2.20 metres to 15.85 metres with an average 6.48 The total depth of open wells in these rock units varies from 4.70 to 26.20 metres. Discharge of existing wells varies from 15 cubic metres to 480 cubic metres per day depending upon the saturated thickness of weathered and fractured zone.

In all, 7 exploratory bore holes were drilled in this formation to determine the extent of thickness of satured, weathered and fractured zone and other hydrologic paramters. The discharge of tubewells tapping granites varies from 14.40 cubic metres/day to 736.0 cubic metres/day and the average recorded discharge is 223.80 cubic metres/day.

In all four pumping tests were conducted to determine the hydrological parametres of the granite aquifer. The transmissivity(T) and storage coefficient (S) were calculated by various methods. The transmissivity varies from 147 metres²/day to 806 metres²/day

and storage coefficient varies from 3.3×10^{-4} to 6.7×10^{-5} .

Table-VII
Showing depth to water discharge and total depth of open wells and tubewells in granites.

s.N	o. Properties.	Open we Mini- mum		Ave- rage.	Tubew Mini- mum		Ave- rage.
1.	Depth to water level in matres	. 2.20	15.85	6. 48	4.0	10.50	6.75
2.	Discharge in cubic metres/day.	15.0	480	114.25	14.40	736	223.87
3.	Total depth in metres.	4.70	26.20	15.09	9.05	57.0	36.60

4.4 RHYOLITE.

Only 3 wells sections tapping rhyolite were examined during survey. This formation is exposed in the south-western part of the district around Karda, Chatwara and Lakhwas. The extent of distribution of this formation is limited. Rhyolites are overlain by thin alluvial cover which gradually increases towards west. These are highly fractured and jointed in nature, while weathering is confined generally to the upper few meters of the formation. The extent of weathered zone depends on topography of the area and subsurface undulating nature of rhyolite.

The depth to water in the wells tapping rhyolites varies from 6.15 to 11.14 metres and the average water level ds 8.38 metres below ground level. The depth of open wells in this rock unit varies from 11.60 to 19.0 metres. The discharge of existing wells varies from 25 cubic metres to 50 cubic metres per day depending upon the saturaded thickness of weathered and fractured zone.

One exploratory bore hole was drilled at Chatwara. It reveals that although weathered zone extends from 8.00 metres to 47.0 metres and it forms a poor aquifer because of the clays released by decomposition of rhyolites are sticky in nature and are not leached out. The discharge of the tubewell is meagre.

Showing depth to water, discharge and total depth of open wells and tubewells in Rhyolites.

S.N	o. Properties.	Open w Mini- mum.	ells Maxi- mum.	Ave- rage.	Tubewells
1.	Depth to water level in metres.	6.15	11.14	8.38	10.80
2.	Discharge in cubic metres/ day.	25	50	35	Abandoned
3.	Total depth in metres.	11.60	19.0	14.78	47

V. GROUND WATER

5.1 OCCURRENCE OF GROUND WATER.

The subsurface occurrence of ground water can be divided into zone of aeration and zone of saturation. The excessive water that percolates downwards from ground surface moves through soil water zone, intermediate zone and the copillary zone. The zone of aeration consists of interstices occupied partially by moisture and partially by air.

The zone of saturation consists of all interstices filled with water under hydrostatic pressure. Water occuring in the zone of saturation is commonly referred to as ground water.

A. ZONE OF AERATION:

Perched aquifers: In the zone of aeration subsurface water some times occurs over impermeable strata of small areal extent which are separated from the main ground water body and lie above the zone of saturation. These form shallow perched water bodies.

In Quaternary formation such perched water aquifer of extensive nature have been observed in interdunal areas in the south-western part of the Jalore district towards north, north-west- and west of Sanchore covering Bhadruna, Dhanigudahema, Amli, Chitalwana, Lalpur, Sangdava etc. The base of these aquifers have been marked by clayey deposits. The depth is shallow ranging from 4.75 metres to 13.45 metres. The yield of wells tapping such perched water bodies is very limited

It ranges between meagre to 30 cubic metres/day. The small supplies of ground water through these aquifers is used only for domestic and livestock purposes. The quality of ground water occuring in perched aquifers is fresh to brackish. Their storage is very limited withdrawal causes frequent dewatering and subsequent recharge from rainfall refills them, thus the quality of ground water remain almost fresh in these equifers.

B. ZONE OF SATURATION:

In the zone of saturation water occurs under different conditions (i) where water only partly fills a permeable bed. The upper surface of the saturated zone, the water table is free to rise and fall. The water in such aquifer is said to be unconfined or under water table conditions (ii) where water completely fills an aquifer which is overlain by an aquiclude the upper surface of this saturated zone remains fixed, water in such aquifers is said to be under confined conditions.

In the zone of saturation some times impermeable lenses of small extent occur which causes semi-confined conditions. These impermeable beds comprise of mixed clay sand or gravel sequences. Thus allowing meagre vertical seepage, as such confined condition only partly exist within such aquifer.

In Jalore district generally the ground water occurs under water table and semiconfined conditions. Confined conditions have been observed in thick alluvial deposits and tertiary formations towards western and S.S.W. part of the district as revealed by bore

holes drilled at Jodhawas and Plader. Free flowing conditions were observed at Jodhawas with a positive head of 2.01 metres above ground level. This bore hole is tapping Tertiary(?) gravel and sand horizons from 210 metres to 266 metres giving free flow of 0.20 cubic metres per hour.

5.2 GROUND WATER OCCURRENCE IN DIFFERENT HYDROGEOLOGICAL FORMATION:

In crystalline formations ground water occurs under unconfined or water table condition, wherein joints and fractures provide conduits for ground water occurrence and movement. These formation in general do not yield high discharge.

Granites which are hard and compact are not productive but when fractured and jointed they form good aquifer as in Korita, Paoli and Khanpur where the discharge of tubewells varies from 80 cubic metres/day to 288 cubic metres/day.

Rhyolites are not productive. Tubewell drilled in this formation was dry and quality of water is saline.

The Quaternary formation include fine to coarse sand, gravel and clays. The coarse sediments form productive horizons in Quaternary formations. At places, the quaternaries are dominated by thick clay sequences and the coarse sediments like gravel and sand are also embeded in clay beds, as a result these do not form good aquifers. At Janwi drilling was abandoned because clean beds of granular sediments were not encountered upto 305.0 metres and whole sequence comprises of clays with sand. The older

alluvium of quaternary forms extensive aquifers in the area. Ground water occurs within granular beds comprising of fine to coarse sand and gravels, clay lenses and sequences with kankars are also common. Some times these clay lenses when underlie and overlie granular horizon produces confined to semiconfined aquifer in the area.

5.3 DEPTH TO WATER:

Depth to water is shallow in younger alluvium while it is comparatively deeper in older alluvium. Veriation in depth to water in wells tapping different hydrogeological units in the district is shown in Table-IX showing depth to water associated with different hydrogeological units.

It is apparent from the above table that 50% wells tapping younger alluvium have their water levels upto 5 metres while 59.81% wells have their water levels between 5 to 15 metres. In granite formation 85% wells tapping granite lie in the depth range from 5 to 10 metres whereas more than 99% wells in rhyolite have their water level between 5 to 15 metres.

The isobath map have been prepared on the basis of data collected during the period June, 1978, October, 1978 and shown in Plate-2.

5.4 YIELD OF WELLS AND TUBEWELLS:

The yield of open wells recorded in the month of June,1978 varies from 5 cubic metres/day to 620 cubic metres/day whereas yield of the tubewells varies widely from 7.20 cubic meters/day to as much as 3336.

• •	<pre>Table-IX: Showing depth to water associated with different hydrogeological units(Period June, 1978.)</pre>	Showing	g depth geologic	to water cal units	associa (Period	ted with June, 1978	differen	3 8		
Š	S.No. Hydrogeological units.		Perc	Percentage of wells in different depth Lie and	f wells	in differ	rent dept	ी गाः	- <u>f</u>	
		ا	5-10	5 5-10 10-16 15-20 20-25 25-30 30-35 35-40 40-45	metres 15-20	20 - 25	25-30	30-35	35-40	40-45
·										
, -	1. Younger alluvium	20	37,50	50 37,50 10,42 2,08	2,08	•	*.			•
2,	2. Older alluvium	19,64	38,39	19,64 38,39 21,42	7,15 3,57	3,57	5,35	3,57		68
در	3. Rhyolite.		- 66,66 33,33	33,33	•	•	•	•		
4	4. Granites.	40,00	45.00	40,00 45,00 10,00 5,00	2.00	1	•	•	•	

Table-X showing yield of well associated with different hydrogeologications and the state of the

4.25	ı	•	ı
6,38	•	1	•
ŧ	1		
ŧ	4.22	2 • 00	1
4.25	3,16	•	i
8,52	9.47	5.00	1
ŧ	7.37	2°00	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	6,32	2,00	
.52	32		t t
	15 6	0.0	
	ຕໍ	00 1	
8,52	8,42	30.	
4.25	9.47	10,0	ı
55,31	42,10	30,00	100,00
			-
Counger 11luvium.	lder lluvium	ranites	4. Rhvolite.
ρι 10 ⊷	2,		4
	1. Younger 55.31 4.25 8.52 - 8.52 - 6.38 4.25	n. 55.31 4.25 8.52 - 8.52 - 8.52 4.25 8.52 4.25 8.52 4.25 8.52 10 9.47 8.42 3.15 6.32 6.32 7.37 9.47 3.16 4.22 -	n 42,10 9,47 8,42 3,15 6,32 6,32 7,37 9,47 3,16 4,22 - 5,00 10,00 30,00 10,0 - 5,00 5,00 5,00 - 5,00 -

Table-XI showing yield of tubewells associated with different hydrogeological units.

S. Range No. in cubic	Percentage of to different range	abewell in
metres/	Alluvium	Granite
day.		
1. 2.	3.	4
	3.17	18.85
1. 0 to 50	3.17	7.14
2. 50 to 100	11.10	7.14
3. 100 to 150	7.39	3.57
4. 150 to 200	8.26	10.71
5. 200 to 250	11.26	17.85
6. 250 to 300 7. 300 to 350	3.26	
	5.00	3 4 5 7
	12.18	17.85
9. 400 to 450 10. 450 to 500	4.34	_
11. 500 to 550	6.09	**
12 550 to 600	14.78	3.57
13. 600 to 650	10.44	-
14. 650 to 700	3.00	<u>~~</u>
15. 700 to 750	9.52	3.57
16. 750 to 800	4.09	-
17. 800 to 850	3.00	-
18. 850 to 900	18.49	-
19. 900 to 950	_	3.57
20. 950 to 1000	7.84	-
21. 1000 to 1050	5.43	
22. 1050 to 1100	2.17	-
23. 1100 to 1150	هنته	-
24. 1150 to1200	14.14	
25. 1200 to 1250	1.96	-
26. 1250 to 1300	2.17	3.57
27. 1300 to 1350	1.96	-
28. 1350 to 1400		-
29. 1400 to 1450	7.60	-
30. 1450 to 1500	1.96	- .
31. 1500 to 1550	1.08	-
32. 1550 to 1600	1.08	<u>-</u>
33. 1600 to 1650		_
34. 1650 to 1700	1 00	_
35. 1700 to 1750	1 , 08	
36. 1750 to 1800		_
37. 1800 to 1850	-	_
38. 1850 to 1900	-	•••
39. 1900 to 1950		

	,	
1. 2.	3.	4.
	5.00	➡
40. 1950 to 2000 41. 2000 to 2050		-
41. 2000 to 2000 42. 2050 to 2100	1.96	-
43. 2100 to 2150	<u>-</u>	→ <u></u>
44. 2150 to 2200	-	<u> </u>
45. 2200 to 2250	<u>-</u>	_
46. 2250 to 2300 47. 2300 to 2350		•
47. 2300 to 2350 48. 2350 to 2400	-	-
49. 2400 to 2450	~	-
50. 2450 to 2500	≟	<u>-</u> .
51. 2500 to 2550	-	<u> </u>
52. 2550 to 2600 53. 2600 to 2650	•	
53. 2600 to 2650 54. 2650 to 2700	1.96	-
55. 2700 and above	1.96	•••

cubic metres/day. The yield of wells and tubewells drilled in different hydrogeological formation by various agencies under exploration and exploitation programmes have been considered and given in Table-X and XI respectively.

Table-X showing yield of wells associated with different hydrogeological Units.

Table-XI showing yield of tubewells associated with different hydrogeological Units.

It is thus apparent from the tables that alluvium is the most productive formation in the district whereas crystallines have limited yield

5.5 GROUND WATER MOVEMENTE

Ground water in its natural state is invariably moving. It moves due to gravity and direction of the effective component of the force in directly down the slope of water table. The movement of ground water is very slow and depends upon the gradient and permeability of formation.

A ground water contour which connects the points of equal elevation of water table indicates the direction of flow of ground water which is at right angle to the normal drawn on contour because no flow crosses an impermeable boundary, flow lines must be parallel to it. From field measurements of static water level in key wells and piezometers and by determining the reduced levels of these observation points a ground water contour map has been prepared for the month of June and October, 1978 Plate-2.

The ground water contour map(June,1978) indicates that the general direction of ground water movement is south east to north west in the south and east to west the northern and western part of the district. It changes in the month of Octoberm 1978 towards west. It is also evident that the slope of water table is steep towards east of Saila—Sankad axis and gentle towards west of it. Which shows the control of this fault on the ground water movement. The hydraulic gradient in the month of June,1978 along sections are A-B 6.41 metres/km.,C-D 1.90 metres/km., E-F 1.23 metres/km.,G-H 5.16 metres/km.

5.6(ii) TYPES OF FLOW:

- a) Eastern portion: Towards north-eastern part of the district where hydrogeological formations comprise of older alluvium granites and younger alluvium along rivers. The ground water contours show wide spacing i.e. low gradient (1.23 metres/km) as such the permeabilities of these formation can be interpretated as moderate to high.
- b) South-eastern portion: Towards south-eastern and southern part of the district where main hydrogeological formation comprise of granite, older alluvium and younger alluvium along river. The ground water contour show narrow spacing i.e. steep gradient and hence permeability of these formations can be interpreted as low.
- c) <u>Southern portion</u>: Towards southern part of the district where main hydrogeological formation comprise of granites, older alluvium, younger alluvium and rhyolities. The ground water contour which shows steep gradient (6.41 metres/km) and hence low permeability

as near Korita, Paoli, Bhinmal and west of Digaon, which indicate comparatively high permeability in the area. It has been proved by drilling on these sites.

d) Western portion: Towards the western part of the district where main hydrogeological formations are older alluvium and younger alluvium along river. The ground water contours show wide spacing i.e. low gradient and indicate the high permeability of these formations. It has been further confirmed by drilling of tube wells at Saila, Dadhal, Modern, Daspa, Jodhawas, Batera and Punasa.

5.7 FLUCTUATION OF GROUND WATER.

Water levels in wells are almost constantly fluctuating and rise or fall in response to change in storage. The amount of water in storage in an aquifer respons to both recharge to the aquifer and discharge from it. When recharge exceeds discharge storage increases and water level rises. When discharge exceeds recharge water is drawn from storage and water level declines. For practical purpose precipitation is the principal source of recharge under natural conditions It is, therefore, intermittent verying fromday to day, season to season and year to year.

Changes is ground water storage are determined by repeated measurements of the depth to water in observation wells below a permanent reference point. In Jalore district 189 key wells have been used for recording water levels in June,October and March every year from 1976. The table—XII shows range of water level fluctuation in different hydrogeological formations. Quantitative analysis of well hydrographs has been dealt in the volume IV,Ground water resources of Jalore district.

Table-XII showing range of water level fluctuation in different hydrogeological formation(in metres)

	1980 1981	June Oct. June Oct. June Oct. June Oct. June Oct.	{\f\rightarrangering} \text{\tint{\text{\te}\text{\tex	-0.80-+2.39 -1.23 - +3.14 -6.58- +2.70 -1.48 - +5.69 -4.20 -+2.21 -1.73- +6.01	-1.75-44.59 -4.81 - +7.68 -4.70- +5.64 -3.21 - +10.12-3.14 -+2.16 -5.57- +12.50	-1.55-+3.65 -0.18 - +3.30 -7.90- +3.05 -2.90 - +8.54 -5.41 -+1.97 -1.60- +7.30	10 50 11 10 11 27 - 12 62 10 10
0.0	1979	June Oct	1.1.1.1.1.1.1.	70 -1.48 - +5	64 -3.21 - +1	05 -2.90 - +8	30 40 20 - 41
F E E	1978	t. June Oct	` •1•!•!•!•!•!	.14 -6.58- +2.	68 -4,70- +5,	30 -7.90- +3.	63 ±0 10- ±1
	1977	ct. June Oc		3.39 -1.23 - +3	59 -4.81 - +7	.65 -0.18 - +3	10 11 37 - 13
odeolo-	1976	June	•				
S. Hydr	No. gica.	unit.	1.1.1.1.1.1.1.1	1. Younger alluvium	2. Older alluvium	3. Granite	A Dhanlito

5.7 WATER LEVEL FLUCTUATION IN DIFFERENT HYDROGEOLOGICAL FORMATION:

- a) Granite: Twentyone wells located in granites were monitered for recording water level fluctuations. The fluctuation in metres vary from -1.55 to +3.65, +0.13 to +3.30, -7.90 to +3.05,-2.90 to +8.54, -5.41 to +1.97 and -1.60 to +7.30 in the year 1976 to 1981 respectively, The key well at Jalore shows rising trend upto October, 1978 and an over all decline thereafter. With a resultant decline as compared to initial observations. key well of Korita shows wide fluctuations and resultant deplition up 1980 but rising trend during 1981. The key well at Ropsi shows marginal fluctuation and in general there is declining trend upto May, 1981, beyond which rising trend is noticed. They key well at Bhinmal also shows in general depletion in water level, during study period.
- b) Rhyolite: Three key wells located in rhyolite were monitored for recording water levels fluctuation. The fluctuation in water level in this formation very from +0.59 to +1.18,+1.37 to +3.63, +0.10 to +1.39, +0.29 to +1.57, -2.00 to +0.60 and +0.60 to +1.29 metres in the year from 1976 to 1981 respectively. The key well at Chatwara shows resultant decline with intermittent rise during the month of October every year.

The key well at Lakhawas also shows the regular depletion in water level after October, 1978.

c) Older alluvium: In all one hundred and fourthen wells located in older alluvium formation were

monitored for recording water level fluctuations. The fluctuation in water level in this formation varies from -1.75 to +4.59,4.81 to +7.68, -4.70 to +5.64, -3.21 to +10.12, -3.14 to +2.16 and -5.59 to +12.50 metres in the years 1976 to 1981 repectively. The behaviour of water level fluctuations in older alluvium is described as follows:

- c) (i) North-eastern part: The observation in this portion of district shows over all depletion in water level, but in a few cases steep rise and fall is also observed. The key wells at Bala, Bijali, Ghana & Bhadrajun, Kidhani shows marginal fluctuations of water levels upto June, 1979 except a decline in case of Bijali and Ghana before January, 1977 to March, 1977 Steep rise in all these wells is observed between June, 1979 to October, 1979. Thereafter, gradual decline upto June, 1981. Wells at Ghana and Bijali ki Dhani show rise from July, 1981 and declining trend thereafter.
- c)(ii) North-western portion: The observation in this portion of district shows insignificant change in storage. The kay wells at Sirana, Ratunja, Nandia and Dahiwa show marginal fluctuations in different seasons but the resultant change in water levels are negligible.
- c)(iii)South-western portion: This portion of district comprises of maximum number of key wells in older alluvium. The kay wells at Bisalaand Bakra shows marginal trend of fluctuation upto July, 1980 and after it shows continuous depletion in water level upto June, 1982. In this portion maximum number of key wells have been located. Generally, the water level fluctuations are gradual in Sarnau,

Sankad and Rawat. A resultant rise has been observed whereas in Sewari, Bukara, and Raniwara gradual depletion is exhibited by the records of key well. Thex key wells at Bisala, and Phagotra show insignificant change. Ratanpura well shows abrupt rise in October, 1977 and gradual depletion thereafter and the well at Junjani and Dhaspa became dry from March, 1980 and June, 1981 respectively after showing a regular depletion in the earlier period.

d) Younger alluvium: In all fifty one wells located in younger alluvium were monitored for recording water level fluctuation. The fluctuation in water level in this formation vary from -0.80 to +2.39, -1.28 to +3.14, -6.58 to +2.70, -1.48 to +5.69, -4.20 to +2.21 and -1.73 to 6.01 metres in years from 1976 to 1981 respectively.

For the description of the behaviour of water level fluctuation in the area covered by younger alluvium it has been divided into different portions as described.

d)(i) Western portion: The observations in this portion of district show resultant there is depletion of water levels. The key well at Saila shows general depletion in water level from October, 1977 to June, 1982 except in the month of October, 1978 and October, 1980 when rises in water level have been recorded.

The key wells at Dadhal shows rise in water level from July, 1976 to October, 1977 except in May, 1977 where depletion of water level is observed. From October, 1977 to March, 1982, it shows continuous

depletion in water level and ultimately became dry. There is slight rise in water levels in the month of October, 1979 and October, 1981.

The key well at Harmu shows a continuous depletion in water levels from October, 1977 to June, 1982.

d)(ii) <u>South-western portion:</u> The observation in this portion of district shows a resultant depletion in water level. The kay well at Kushalpura shows significant rise and fall in water levels The water level shows continuous depletion from October, 1979.

The key well at Alri also show significant fluctuations in water levels and resultant depletion in water level from June, 1980 to June, 1982.

The key well at Ajodar shows marginal fluctuations with a resultant rise in water level. The key well at Bamanwara shows marginal fluctuations in water level. It shows rising trend during 1977 and 1978 thereafter depletion from October, 1979 to June, 1982 except in June, 1981, when rise in water level is recorded. Thex key well at Rampura shows insignificant fluctuation and a resultant rise in water level.

5.7(ii) Monthly water level behaviour:

A net work of 38 key wells and 21 piezometers was monitored from March, 1980 to January, 1983 from June, 1982 closer and more regular observations on the trend of water level have been recorded. The regular monitoring of piezometer started from June, 1982. These data have been used for analysis of well hydrograph.

In granite formation two observation wells and five piezometers were monitored for monthly water level observation. * The piezometers at Korita and Paoli monitored from June, 1982 to January, 1983 and shows similar trend offluctuation in water level. There is rise in water level from June, 1982 to September, 1982 and after it shows continuous depletion in water levels.

The piezometers at Khanpur, Panseri and Bhinmal shows rise in water level in the month of August-September, 1982 due to flood in the area and after September, 1982, it shows continuous depletion in water levels.

In older alluvium formation 20 observation wells and 11 piezometers were monitored for monthly water level observation.

The piezometer of Daspa shows that there is rise in water level from June, 1982 to September, 1982 and after it shows continuous gradual depletion in water The piezometers at Jaitpura - Jogni shows levels. rise in water level from June, 1982 to October, 1982 After it shows depletion in water levels upto Jan., 1983 The piezometer at Kmaber shows smooth trend of water However, there is slight depletion in water level from June, 1982 to January, 1983. The piezometer at Rama shows fall in water level from June, 1980 to November, 1980 and after this piezometer was not monitored from December, 1980 to May, 1982 and from June, 1982 it again shows the depletion in water level upto August, 1982. Water level rises in month of September, 1982-October, 1982 and after it shows depletion in water level upto month of Jan., 1982 The piezometer of Ummedpura shows rise in water level

in the month of August, 1982 and September, 1982 resultantly it shows the depletion in water level upto January, 1983.

In younger alluvium 13 observation wells and 5 piezometers were monitored for monthly water level observation. The piezometer at Bagora shows slight rise in water level from June, 1982 to August, 1982 after it shows continuous depletion in water levels from September, 1982 to January, 1983. The personneter at Bhainswara shows marginal rise in water levels in the month of August, and September. then it resultantly shows the slight depletion in water levels. The piezometers at Saila shows slight rise in water levels in the month of August, 1932 and September, 1982 and resultantly itshows depeltion in water levels upto January, 1983.

VI. AQUIFER PROPERTIES

6.1 PUMPING TEST:

Pumping tests were carried out to determine
the well properties and aquifer characteristics.
Step draw down tests were carried out in two to
three stages for determining well properties.
Long duration pumping test. i.e. aquifer performance tests were carried out with constant
discharge for a period of 24 to 52 hours duration for
determining aquifer parameters.

In Jalore district pumping tests were carried out at Bagra, Bhainswara, Jetpura(Joomi) Modran, Rajanwari, Rama, Sankarna, Umedpura, Khanpur, Kolar, Korita and Paoli. Results of pumping test carried out at different dites have been fiven in Table-(XIII)&(XIV). The transmissivity was determined in case of 12 test wells whereas the values of storage coefficient could be determined in case of only 10 test wells, because there was no observation well with remaining test well.

Table XIII showing details of pumping test conducted in

1.S.D.T.=Step drawdown test. 2.A.P.T.=Aquifer performance test 3.S.W.L.=Static water level 4.P.W.L.=Pumping level 5.D.D. =Draw down.	
	1
	•

က် န	Name of	S. Name of Location Stage Dura- Disch-	Stage	Dura-	Disch- arge	Test well Zones tapped	well tappe	ľg	Obser	vation	well	Observation well Specific Zone tapped capacity
2	DEPTTA	• • • • • • • • • • • • • • • • • • • •		in	in	SWL	PAL	B	SWL	PWL	D.D	cubic metres
				hours	.litre/			in				ber hour per
					minutes.			mts.				metre of
								!		1	 	Drawdown.
14	2	1. 2. 3. 11. 12. 13. 13. 12. 13. 13. 14. 15. 15. 15. 13. 15. 13. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	 	5.	6		1 100 1	6	10.	11.	12.	13.
Į.	1 1 1 1	1 1 1 1 1	 	i i i	1 1	1 } !	; } }	! 	i i	 	 	.
*	MITTINE											

~
-
-
-
1
-
_
=
-
-
-
4
**

1.	1. BAGRA S.D.T.	Adjacent to village tank	H	2 2	982.50 1035.00		22.72	15.12 16.89	1 1	1 1	1 1	3,89
	A.P.T.	Nagane	H ·	37	1132,50 982,50		24.48 16.88 24.50 16.80 7.75 8.54	16.8 8 16.80	7.75	8,54	0.79	3,50
2.	BHAINSW S.D.T.	BHAINSWARA About 2 fur- S.D.T. long from I	, H =	. 2	9 37. 50 1132.50	10.49	15,52	5.03	1 1	į i	1 1	11.18 10.86
	A.P.T.	south.	111 -	2 4 6 4	1335.00 1132.50		16.99 6.50 10.77 11.87 1.10	7.81	10.77	11.87	1.10	10,25 10,45
e e	JOGNI.	A 1.75Km.from Jogni village towards east	અ	2	622,50	10.57	14.87	4.80	0:	ı	1	7.78
	S.D.T.	of road lead-	d- II	2	768,75	768,75 16,29 6,22 -	16,29	6.22	. 1	ı		7.41
	£ p	ing to Ahor		7.	31.5 787.50		15.76	6,15	10.00	15.76 6.15 10.00 10.81 0.81 7.68	0.81	7,68

$\frac{1}{4} \cdot \frac{2}{\text{MODRAN}} - \frac{3}{\text{About 2km}} - \frac{4}{\text{I}} - \frac{4}{\text{I}}$ from Mataii ka II	1 ½	⊲ ∀I		200	6. 091875 1132.50	9.15	8. 11. 79 11. 38	2 64 3 23	1011	- 1	· · · · · · · · · · · · · · · · · · ·	13. 20.88 21.03
III 2	III 2	III 2	•	133	35.00		12,82	3.67	1	i	i	21.8
A.P.T. 50 113	. 50	50 1	क्ल	113	2.50		12,19	3.04	8.60	8.75	0.14	22,35
3,5	m I 3.5	ب ق	ر د	v	00.00	7.11	32,30	24.17	. 1	ı	1	0.14
S.D.T. village due II 3.5	II 3.5	3.5	2	ω	82,50		37.67	29.48	ı	1	i	0.16
N 20°E 26.16	- 26,16	26,16			2.25		50,34	43,33	5,82	7.11	0.25	0.29
T 2	T 2			168	3.75	6.22	13,39	7.17	ı		1	1,56
due 287° II 2	11 2	8		240	8		17,35	11,13	ı	:	ŧ	1,29
III 2	III 2	1 2		305	305,25		21,08	14.86	ı	1	t	1.23
A.P.T 43.75 240	43,75 24	43,75 24	3,75 24	24	0		18,07	11,85	90*9	10,38	4.32	1.21
	from I 1	H		194	. 25	3,61	7.95	4.28	1	1	ŧ	_
south.		, , -1		262	50		16,62	12,95	1	ŧ	ı	1,21
- 51,66	- 51,66	51,66	99		• 50		30,07	26,36	3,71	4.26	0.55	r)
310° £	310° from								•			
235° I 2 622	235° I 2 622	2 622	622	622	50	7.99	16,52	8,62	t		\$	4,33
fr., bus standII 2 768	standII 2 768	2 768	168	768	.75		23,30	15,40	1	ı		5 8 9 9
III 2	III 2	7		937	.50		27.09	19,19	1	•	ŧ	2,93
47	47	47		392	3,75		14.98	13,92	8,01	9.47	1.46	2,31

133	1	4,45	1		0.65	t	2,35	•	12,5
12.	8	0.86 4.45			1,68	1	1	1	8
11:		9.76		1	9,31	ı	ı	1	ı
010	1	8.90	1		18,38 10,38 7,63	t	t	ı	•
1		5,09			10,38	1	3,41		10,93 1,26
φ. Ι	t	14.26 5.09		ŧ	18,38	1	12,45 3,41		10,93
7:	i	9.17		ı	8.00		9.04		6.67
	ı	305.25 9.17		•	31,25 111,75 8,00	1	133,75	ı.	262,50 9,67
ا ای ا	•	24		1	31,25	1	24	1	24
NE 3	Village about * furlong near-	School.	1 furlong from village ENE OF	villaye hill -		2 furlong from village due S -	30e 国 ·	1 Km. due N. 30° E from	village
1. 2. B. CRYSTALLINE	Khanpur S.D.T.	A.P.T.	10. KOLAR S.D.T.		A.P.T.	11. KORITA S.D.T.	A.P.T.	12. PAOLI S.D.P.	A.P.T.
-네면 	6	i .	10.			11.		12	

Showing aquifer parameters determined by different methods.

ches sovery chod day	0	4 859	1013 800	5427	1 ,1	49 58	151
를 하는 경기	788 4.9x 900	. 837 7.7×10 8	9.65x 10 -4	6.9x	1.68x 10-2	3.0x 10-4	1
Theiss method $\frac{T}{M^2}$ day	788 4 1	837 7	948	1.5x 4560 10-3	400	4	1
_	962 2.6x	- 8,77x 10-4	944 1.14x 10-3		1.27x 10 -2	2.2x 10 -4	1
ł	962	859	944	4265	490	53	ŧ
Type of well.	P Obs.	P Obs.	P Obs.	P Obs.	P Obs.	P Obs.	P Obs.
Disch- Draw arge down in in litres metres.	0.79	1.20	98•0	0.16	0.26	4.32	0,55
<u>ри</u> 10 гил г ра	937.5	1132.5	787.5	1132.5	86.25	240.0	229.5
S.W.L. in metres	8.75	11.65	11.0	10,15	7.70	7.28	4.91
In take in metres	0.59	37.0	44.0	39,25	45.5	26.20	20.07
Hous- ing in metres (+a.g.1)	21.0	25.0	2 6. 0	29.75	20.0	19.60	17.50
Location of bore hole.	ALLUVIUM Bagra	Bhinswara	Jaitpura Jogni	Modran	5. Rajanwadi	Rama	7. Sankarna
SO.	A BIB	2• B		4 . ▼	5. F	• •	7. 8

<u>.</u> 1	349		1 1	1-1	183	1 233
ć ,			1 1	ŧ t	i i	1 1
r.i	1 88 8		t i	i i	1 1	1 1
10.	2.65x 335		6.7x	3.3x 10 4	1 1	1 1
91	1 m		908		1 1	1 1
8	P Obs.		P Obs.	P - 147	p.	P Obs.
7.	1,49		4.11	10.38	3,41	1.26
! ! ! ! !	622,5		305.25	111.75 10.38	138,75	262,50
ທີ			9.17	0.8	9.04	19.6
4	16.0 29.0 9.05 622,5 1,49 P 2,65x 332 2,65x 335	SH	9.50 (7.50 9.17 305.25 4.11	13.50 25.50 8.0	6.50 50.50 9.04 138.75 3.41	9,90 17.10 9,67 262,50 1,26
ć	8. Umedpura	CRYSTALLIN	9. Khanpur	10. Kolar	11. Korita	12. Paoli
•	ι • α	B	6	10.	11.	12.

T= Transmissivity in cubic meter/day S= Storage coefficient Values of T & S determined for Modran test are seems to be abnormal

CONCLUSION

Jalore district lies in the arid zone of The physiographic set up of the district constitutes of extensive alluvial plains with rugged hill ranges occuring in central and southeastern part. These hill ranges are generally composed of Jalore granites, rhyolites with some admixture of granite. Hill tops are normally shapped by weathering which has given rise to tors and boulders whereas sand dune are common topographic features in mid eastern and western part of the district. present land form units are the product of the part fluvial, erosion and sub-aerial denudation and hence, both erosional and depositional land form units are found in the region. The area is well drained by the Luni drainage system. All rivers in the area are ephemeral with braided meaindering course and flow in direct response to precipitation. The climate of the district is extreme, low and erratic rainfall of -ten results in recurring droughts.

The detailed hydrogeological investigations of the district comprised well inventories, regular monitoring of key wells and piezometers, geophysical

and hydrogeological studies, exploratory drilling and pumping tests. As a result of these findings number of ground water potential areas have been demarcated which are suitable for further ground water development.

The results of hydrogeological studies reveals that there are two major dislocations in the area one in the west along Saila, Sankard axis and another along present course of Jawai, Sukri river. The thickness of quarternary sequence across these faults suddenly increases and a thick sequence of sand gravel and clays, probably of Tertiary period, it encountered in the bore holes drilled.

and semi confined conditions. Confined conditions have been observed in thick alluvial deposits and Tertiary formation(?) towards west and SSW of the district as revealed by bore hole drilled at Jodhawas where free flowing condition at the rate of 0.20 curies metres per hour has been observed.

Younger alluvium is the most productive formation in the area, it is generally confined

along river courses. The thickness of productive horizons varies from 20 to 65 metres and they yield from fresh to moderately saline ground water. The yield of existing wells varies from 5 cubic metres per day to 620 cubic metres per day, whereas the tubewells yield 130 cubic metres per day to 1344 cubic metres per day. Transmissibity of the aquifer varies from 151 square metres per day to 5427 square metres per day and the storativity between 7.7×10^{-4} to 8.77×10^{-4} , which reflects confined conditions.

Older alluvium covers major part of the district, ground water generally occurs under water table and semiconfined conditions. However, confined conditions were observed in the bore hole drilled at Plader and Jodhawas. These sediments consist of an upper layer of sandy loam and kankar, unsorted disinguigrated rock fragments and lower layer of medium to some sand and gravel with clay lenses of variable thickness. The thickness of these aquifers range from 11.0 to 80.0 metres and generally yield saline to highly saline water. The discharge of existing wells varies from 5 cubic metres/day to 480 cubic metres/day and of tube wells ranges between 27 cubic metres/day and 1072 cubic

metres/day. Transmissibity varies from 44 to 1013 square metres/day storage coefficient ranges between 9.65×10^{-4} and 1.27×10^{-2} .

In crystalline formations ground water generally occurs under water table conditions wherein joint and fracture provide conduits for ground water movement. Yield of these formations depend on extent and degree of weathering and number of fracture per unit area below water table. Normally, crystallines are not good aquifers but wherever enough weathered zone and number of ractures are encountered below water table, they give moderate yield. Both fresh and saline water occurs in these formations.

Discharge of existing wells in Granite varies from 15 cubic metres/day to 480 cubic metres/day whereas yield of tubewells ranges between 14.40 cubic metres/day and 736 cubic metres/day. Transmissivity varies from 147 square metres/day to 806 square metres/day and storage coefficient varies from 6.7 x 10⁻⁵ to 3.3 x 10⁻⁴. Rhyolites occupy very limited area and discharge of existing wells varies from 25 cubic metres/day to 50 cubic metres/day.

RECORD OF REPRESENTATIVE WELLS OF JALORE DISTRICT

R.L. from		ring point.		13.		186.88		•			40.00	PO POCT				, CES 1271	0/64/01					161,280		٠	
Meth- Grou- Yield R.L.	lift/ water wells	temp- 19 erat- M/	day.	12.		325						ľ					067 0					5 1			
Grou	wate	temp erat	ure			53						17					C*C7					27.5			
Meth- Gro		esn Jo	well, ure	10. 11.		DMP/I					;	Idle				1	T/AWN .					· Un	used.		
bearing	below Aquifer Geological	source.		9		Quat-	ernary					nd -do-	-woo'		W.	•	Clay & Kankdo- EMP/1	r.		MI	;	Clay & Kankdo- Un		ALLU-	
Water Water bearing	Aquifer					14.30 Sand &	gravel	with	kankar	OLDER			kankar, com-	pact.	ALLUVIUM		Clay &	ar with	grave1	AT.T.IIWTIIM		Clay &	ar,	OLDER ALLU-	VIUM.
		land surfa-	ce in	metres.		14,30	•					16,32					2,10					2.44			
Type, location Total Dia-	depen mens- below ion	land in		in mtrs.	 	well.360°from27.25 3.70	×	2,45				Well, 70° from 39,65 3,80	×	3.40			8,30 2,50					2.44 11.210° from 19.70 3.15 2.44	•		
Tota	belo	land	ace	다. 라이	i i	n27.2						39.		υ υ	ൽ							19		ŧ.	
cation	and name			! ! !	! !	60°fro	posit	ndary	endra			Offrom	bout	villag	Khuran ager)	dyar.	rest of	out 1	from	Fra Ja-	- [10° fro	t the	f vill	<pre>fotel, .1.</pre>
re, 10	well a			1	1	well.3	lage opposit	Hr. Secondary	cl, Sur	Kumar Jain		well,7	top, a	3 km.from village	on wey to Khurana owwesty esset	יי אדוויי	y well, west of	egeab.	cng.75	לונט דו ייש -/:	o/o rna ichary.	. [[aw	Ede. A	rence c	ame mear Hotel, public well.
TYT,	> } } }			1	1			t H	Scho	Kuma		Dag	h_{11}	3 km	on v	2	Dig)vill	furl	HIO.	1. 1. 20 1. 30	ב ב	Vii	enti	arre pub]
Name of	No. village/	number.		 	1	BLOCK.	45C15Bc vill					BALA	45C14Bb				BANKLI	(Nichli	45C14Dc		ji >/o inanji Chouchary•	TGOAR	45C10Id village. At the		
Code	ó			1			4					7	ŀ				m					-	H		
ွိ	No.			 	l il	AHORE	•					24	;				ກໍ					-	•		

192, 13	184. 385	150,320	212.780	212,850	158,585	197,315
1 9	228	20	40	325	40	150
	88	88	28	53	53	53
ter idle	EMP/I	Dary I	BM/I	EMP/I	BM/D	EMP/I
car Ouater /	Quater -nary	7edo-	Post Delhi	Quat- ernary 7IUM	-do- 1r 7IUB	-do-
Clay & Kankar with gravel OLDER ALLUVIUM	Sand and gravel YOUNGER ALLUVIUM	Sand & grave- 1 with clay OLDER ALLUV- IUM.	Granite	Clay and Qu kankar er OLDER ALLUVIUM	Sand with clay &kankar OLDER ALLUVIUM	Sand, gravel - & clay, OLDER ALLUVIUM
00.00	bug well, 100° trom 17.80 2.90 8.45 village at the ent-rance of village, Kr.Devisingh S/O Madhosingh, Ex.MLA.	well,320°from 15.30 2.90 age about 1 km. x Indaj S/o 4.00 iramji Tarak	## 11,180°from 14,40 1,40 6,90 retemple near x bank,Raja S/o 1,40 Hali.	2 fur- 18.30 3.50 8.80 1lage, x ad 1.70 ingh h	360°from 10.52 1.80 4.92 at the en- f village en-	from 11.80 1.80 5.90 it of x thura 2.90 about \$\$s/o\$
2. 3. 5 BHADEJ JUNKI DHANI 45C141	<pre>b BHAINS- Dug Well, 100 from WARA village at the ent 45C15Bb rance of village, Kr.Devisingh S/O Madhosingh, Ex.MLA.</pre>	7 BHAWARANI Dug well,320°fi 45C10FC1 village about 3 away,Indaj S/o dayaramji Tarah Choudhary	Dug we villag	45C15Ia	10BIJLI Dugwell, 45C14Aa village trance c Fublic w	11BITHURA Dug well,50° 45C15Cdl village,wes road for Bit to Chandaro 1 km.,Majia Nathia Meena
(6) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	۵		o o	•	10.	11.

13. 196.305	195,860	209.960	176,550	27.5 130 164.980	165,255	177.69	150 211.210	325 199,000
12.	20	929		130	1	255		325
अ ं १० १०	,		25.5	27.5	27	26.5 255	28.5	53
9	Buck- et/D	EMP/I 27	DMP/I 25.5 325	d O	Idle	EMP/I	-do-	. DMP/I
- 9. Quate- rnary	000	-00-	i op-	-dp-	-do-	-op-	Post Delhi	Quaernary DMP/I
8. clay,kankar & gravel OLDER ALLU- VIUM.	Sand& gra- vel,YOUNGER ALLUVIUM	Sand & grav- el, YOUNGER ALLUVIUM.	Sand, gra- vel & kankar OLDER ALLU- VIUM.	Sand, clay & kankar, OLDER ALLUVIUM	• do•	Clay & kan- kar,OLDER ALLUVIUM.	Granite	Sand, clay & Q te kankar OLDER ALLUVIUM
00.	1	7.70	5.00	11,25	6.80	8,45	5.81	9.17
3.00x19	• 50		2,80		1.90	3 × 40	4.40 X	3.30 1.40
Las well, 202 from 27.50 village at about 1/2km. Keshar Singh S/o Alay Singh.	Dug well, at centre 13.80 3.20 of village Madri (Kumaro ki Basti) Public well.	Dug well,320°from 17.00 4.80 hill top on road to Harji about 3km. tefore willage, Imadudin 5/0	cayed Alloward in the control of the	Dug well ,295°from vil-22,75 2,80 lage about 1km.Prabhu kam S/o Pannaji Chau-	dnary. Dug well,360°from vil-15.60 lage,adjacent to it, Bublic well	<pre>•from vil-21.90 to Jogni, O Ramsingh Magaram.</pre>	th15.50	il- 16.20 ce of h ot.
3. Da <u>valdura</u> 45C15Eb	DAYALPURA (MADRI) 45C15Eb	DODIYALI 45C15Fc1	DUDIA 45C14Cd1	GHANA-I D 45C13C61 1:	GHANA-II D 45C13&d2 l	JAITPURA D 45C15AC 1	19. 19 KAONLA D 45C13Ae a	MANPURA D
12. 12.	• 13	• 14	15	16	17. 17	4	, 19	20.20
•'C\ লান	13.	14.	15.	16.	17	18.	19	50

***************************************	2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		5	7-7-	1 00 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1		10. 11	(-i) 	910. 11. 14. 13.	
77.77	41.21 NAMBLA DUG 45C14Fa Vill On J	<pre>village elout 1/2km, on Jalore road,Girdh- ari Bhara Ganchi.</pre>	10°7 00°11	7.00	Sand.clays gravel,clobr ALLUVIUM	Chate-	EM/1 29	α	110 and	
22.22	22.22 PADARLI 45C15Hc		8.10 4.30 x	3.70	Clay and kankar,OLDER ALLUVIUM.	do 1	DMP/I 26	·	175 205.110	
23.23	PAL_SI/ 45C15IN	Dug well, 96° from hill top and about 1 furl- org from village, Bura	24.40 3.30	5.17	-qo-	-00	EMP/I 28		260 226,990	
24.24	24.24 RAMA 45C14Ea	Drg well, 80° from village at the entrance of village. Public well PHEI	27.10 2.60	00*6 (- ਯੂ ਰ	op	EMP/D30 & L		325 186,820	
25.25	KI DEANI 45C14Id1	Dug well, 10° from village at 1 furlong distance, 140° from Meghpura hill, Prabhuji S/o Janianji Chqudhary	13.70 2.20 X 3.15	3,15	Granite, weathered.	Post Delhi	BM/I 26		105 195,320	
26.26	SANYHWAL 45C15Dc	26.26 SANFHWALI Dug well,155°from 45C15Dc temple,about 2 furlong from PHED tank,Mangal singh S/O BHURSINGH.	21.15 3.00 12.00 3 x 4.00	12.00	Sand and gravel, OLDER ALLUVIUM,	Quat- ernary	DMP/I 2'	7.5 2	DMP/I 27.5 285 185.09(-
27.27	27.27 UMEDFURA 45C15FC	Dug well,340°from village adjacent to it, Sajjansingh Motisingh.	19.17 3.00	9.20	Sand & gravel, YOUNGER ALLUVIUM.	i do	EMP/I 26		250 207.720	
28.28	BHINMAL BLOCK. 28.28 BAGAWAS 45C4E&1	Dug well,N 45°W just outside the village, public well.	34.60 1.70	10.56	Sand & gra- vel,OLDER ALLUVIUM,	-op-	Buck- 29 et.	9 25	101,595	
29.29	29.29 BHAGIL BHIM 45C4Id1	Dug well, due E., about 1/2 furlong from village, near temple Mod Singh.	26,85 1,85 15,65	15,65	Sand & gra- vel, YOUNGER ALLUVIUM.	-op-	EMP/ I&D	- 24	240 137.290	

10, 11, 12, 13,	Idle	DMP/I 28 300 155,890	Budk- 31 20 103.920 et.	-do- 27 20 94.825	EMP/I - 360 116.840	Buck- 28 20 65.585 et
8. 9.	Clay & Quat- kankar, ernary OLDER ALLUVI- UM.	Grapit e Post weather Delhirced.	clay & Quat- Budk- kankar, ernary et. GLDER ALLUVIUM.	Sand & -do- gravel, YOUNGER ALLUVIUM.	Sand & -do- gravel, OLDER ALLUVIUM	Fine x -do- sand YOUNGER
7.	2.80 14.83 x 2.65	5.05 4.10	1,35 34,60	2,10 4,00	2.85 9.63	2,60 3,88
	Jug well, 27.35 In the village, Public well.	BHINMAL Dug well,S15°W 5CgCb about 1 12.90 furlong from rai- lway brid- ge,Amarsingh Basartsingh.	Dug well, 35.90 N 60'E just out side the village Public well.	Nug well, 13.25 N 60°E abo- ut 1 furl- ong from village Public well.	Dug well, 15.60 N 40° W about 1 furlo- ng from villa- ge Sonaram S/o Kesraram Mali	Dug well, 5.00 N 25°W. about 1/2
	30, 30 BHIM- JU PURA IN 45C8BC VI PU	31.v31 BHINMAL D 45CBCD e f f f	32. 32 CHAJJALA D 400 ₁₅ Hb ₁ N	33. 33 DAMAN 24 45C4 Ad v v v v v v v v v v v v v v v v v v	34. 34 DASPA II 45C ₄ HC N	35. 35 DEVDAKA I GOLIYA N 40016DG

- 12 13. 85 40 77. 385.	120 141,590	480 100,030	20 81.840	30 112,185
-10. Buck-29.	EMP/I 29	DMP/I 29	Buck- 29 et	Buck- et
Sand & Quat- gra- vel, Yo- UNGER & ALLUVIUM	Sand & -do- gravel, semi conso- lidated YOUNGER	Sand & -do- gravel with kan- kar, OLDER ALLUVIUM.	Sand & -do- gravel with clay & kankar, OLDER	Sand & Quatagray with clay,
10.80 2.50 6.90 -	4.15 14.20	2,10 9,68	2.40 8.00	2,80 8,49
10.80	23.00	13.40	10.90	11.25
due E, in side Vill- age, Public well.	Dug well, due N, about 1 furlong from village yka S/o Rawata Chowdhary.	Dug well, N.50°W about 1 km.from village Makhansingh S/o Kishan singh Rajput	Dug well, N.50°E just out side the Village, Public well.	Dug well, due E.abo- ut 50 Mtrs. from villa- ge Fublic
36 DUMARIA 45C4Ba	45C8Ca	geran 4504Fa	JASAWAS 45C3Ca1	JETU 45C4Hb1
30.00 30.00	37. 37	38.	36° 39° 39° 39° 39° 39° 39° 39° 39° 39° 39	40• 40

41 JUNGANI DUÇ-CU	January Carl	4		•	2,50	19.36	Sand &	91011	10. BMP/I	1 1	20 H	132. – 138. 640
45C4Ial due W about k km.from village Ranchor S/o Lalaji Kalby.	5C4Ial due W about k km.from village Ranchor S/o Lalaji Kalby.	W about km.from llage nchor S/o					gravel indiy with clay & kankar OLDER ALLUVIUM.	inaiy Luvium.				
42. 42 KHUSLAPURA Dug well 1 45C8Bb due W, about ½ furlong from village Jagmalsingh Rajput.	well about ong illage singh	well about ong illage singh	~	14.65	4.00	6.25	Sand & -do- gravel loosely consolidated. YOUNGER	-do- dated.	- op-	1	0960	139,580
43. 43 LADERMER Dug well, 17 45C8Ca north of village adjacent to it Public well.	O	O		17.00	2.70	8.40	Sand & -do- gravel with clay consolidated GLDER ALLUVIUM	-do- dated	Bucket	52	20	170.190
44. 44 MEDA Dug well, 6. 40016Hd due south about 1/2 furlong from village, Public well.	Dug well, 6Hd due south about k furlong from vill- age, Public well.	1 D	9	09*9	1.60	3.65	Fine san with few kankar OLDER ALLUVIUM	sand -do-	• op •	788	30	74.830
45 MORSIM Dug well, 6.90 40016Ec due S.from village near temple Public well.	Dug well, c due S.from village near temple Public		v	0	3.00	3.20	Fine sand YOUNGER ALLUVIUM.	- GO-	ල් 0	53	0	57.450

i	o e	28 15 69,415	25 121 • 300		20 93,545
9. 11.	Euste-Buck. 29 rnary et. F.	er ER IUM.		1 -dodo- T	-do-
78	4.55 Fina Sand Dittle Nith Little Kankar, OLDER ALLUVIUM	3.80 Fine sand YOUNGER ALLUVIUM.		9.25 Sand & gravel with clay & few kankar OLDER ABLUVIUM	ro.
6. 7.		2,35 3		2.60	1.80
4.	fr Du	NEVARAUTA Dug well, S 5.90 40016Ca 55°W about 50 mtrs. from village Public Well.		48. 48 NIMBAWAS Dug well, 41.25 45DlDc due S. about ½ furlong from village Public well.	Dug well, due S. about % furlong from village Public well. Dug well, due E about 1/2 furlong from
1c 2c 3.	46• 46 NAN	47. 47 NEVARAUTA 40016ca	TN 87 01		49 49 PH

!	اری ا	1. 2. 3.	4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.	9.	5 67	81	9.	10.	910111213	124 -	13.
50.	20	PUNASA 45D1A:01	ig well, le E about furlong com vill- ye,P.H.E.D.	46.00	1.90	18,95	Sand, clay g grave little conso OLDER	Quaterrang rnary lated	Sub- mer- sible Pump.	ı	320	98.375
51.	£	RANGALL 45C3Ba	Dug well, due 13.30 E ak out I furlong from village Public well.		2.40 2.60		Sand & gravel with few kankar	P 3	Buck- 29	62	0 8	82,565
52		52 SEWRI 45C4Bd	Dug well, N 4C°E about 3 furlong from village Praladji Lunbaji Bisnoi.	10.60	2.20	7.90	Sand & -do- clay with little gravel, semi consolidated OLDER	-do- dated	EMP/I 29		480	87.815
	ຮູ	SOBRAMA3 40015Hb2	S Dug N well N 30 W about Of village Public well.	10,45	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7.45	Fine sand with little kankar OLDER ALLUVIUM.	-do-	Buck- et.	28	50	76,925

13.	40 160,405		40 170,550	120 ,154,785	20 144.900
1	16	,		***	~
12.	40	!	0	120	50
1	3		•	3	
=	23		ŧ	71	1
10,1	I/dWC		ಕ ೦ ೮	Pers- 24 sion wheel/I	- a/awa
, i	Onete DMP/I 23	rnary id	90	-qo-	-do-
567188919111213	ئ ت د د د	రమడక్	Sand & gravel loosely consol-idated, YOUNGER ALLUVIUM.	Clay & - kankar OLDER ALLUVIUM.	Sand & -do- clay OLDER ALLUVIUM.
∞I		3	N DHOHNA	0 2 0 4	
	,	2	3.72	6, 25	8 • 60
9		12.45 3.00 L	3.50, 3.72	12.28 3.00 6.25	2,60. 8,60
1 1 1	·	G • 77	7.70	14	11.40
	;	Dug well north of village on the bank of river, Dhebaji Joga	55. 55 ARTHWALA Dug well, 45c16Ec N W of village about 2 km. Ginoi Dhanna	Sutuar. Dug well, 1; near Ramdev temple, S.W. of village Bhuraji Babra Ganchi.	57. 57 BAKRALOAD Dug well, 45C8Gc near Railway Station, Pratapmal Bheru Suttar.
1. 2. 3 4.		54. 54 AKGLI 45C12Ea	arthwaf a 45c16ec	56. 56 BAGRA 45C12Db	BAKRALO! 45C8Gc
21.5	둺	ሊ 4	SS	56	57
	STEE	\$4 •	55.	56.	57.

13.	187.180	177,810	160,575	151.675
12.		180	380	•
10. 11.	26.5	52	27	1
10.1	0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	25 T/4WG	- op -	BM/ Idle
٠ ا	Quases fulle ready:	Post Delhi.	Onate: -do- rnary M.	-0p-
67 8 9.	Sand & Q gravel r with clay OLDER ALLUVIUM.	Granite Post weat- Delhi hered.	Sand, Q & r clay OLDER ALLUVIUM.	Clay & kankar OLDER ALLUVIUM
7.	24,50	2.80	4.00 14.70 X 4.00	4.35
: او	4 × 20 × 4 × 20	3,85		3,00
ا ا ان	27.50	14.09	23.70	22,25
	Dug tell mean PHED Tank,5% from village,172° village,172° From Raja Public well.	Dug well, y km.from village on R.H.S. of road to Jalore, Mangji		A.
\$ \$ (0.1)	EFACTIFA DAG VAN SINDEWANDEL 45C11FA PHED Tank, 5% from village, from Raj from Raj Bhakar, Public	59. 59 BILBAR 45012ED	60. 60 BAFTA 45C11DG	DHANPURA 45C12Ac
C1,	8 8 1	69	9. •0	1. 61
ت 1		ις O	ŏ	Ý

17.320	183,815	183.685	223.560
270	350	i	150
	53	1	23
1 0 े दे	EMP/ D&L	Idle	Pers-
ි. දෙක් දෙක්	Post	- qo	900
8. Sand coarce with karli 6. 11tui gravel, OLDER	Granite Post weatheredDelhi	Granite	1 0 0
27.50	15,85	ı	0 4.95
(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	5.20	2,90	00 3 5
5. 08.30	26.20	19.40	uth 16.(age
south of road Abore to Jalore near 1 km. stone £ 180°from hill, Mega, Dalla,	Dug well, east of Jalore- Bhirmal road about 1 km. from city, from city, P.H.E.D.	Dug well, inside Surajpole, opposit to bank building well, Jain	Dug well, south 16.00 3.50 4.95 of the village Ukhoji Megaji
2. 4. CODIEN DES WELL 45C11HG SOUTH Of road Abore t Jalore 1 km. s 6 180°f hill, Me Dalla, Choudha	63 JALORE 45C11Ed	64 JALORE 45C11Ed	65 MAYLAWAS 45C12Gd
करिय अपि अपि अपि अपि	63. 63	64. 64	65, 65
	•		_

~!	71	1. 2. 3.	4	5	9	7.	i i i	9	100.	11.	12%	13.
99		66 MEKA UPARIA 45C15Cc	WEKA Dug well, UPARIA 140°from 45C15Cc village & adjacent to it Lakhaji S/o Jetaji Rebari.	23.95	3,75	8 95	Sand C medium r with clay & kankar OLDER	Quate- DWP/I rnary.	I/awa	53	32 22	242,320
67.	. 67		MESPPURA Dug well, 45C11Ec 295° from Ratan Pura hill, Bagh singh S/o Mohabbat singh.	20,70	% % % % 00 % 00	4. 80	Sand, medium kankar with gravel, OLDER	Quaternary	I/awo	.	210	182,702
. 89	68	MITHRI, 45C11Gb	92242	22.50 1.,	3.00 1.90	14.00	Sand, -d gravel with clay, OLDER	-do- ay,	မှ	50	380	166,040
69	69	RAJAN VADI 45C11IC		25.80	3,50	06.	Sand, clay-do- & kankar OLDER ALLUVIUM.	ay-do- r M.	100p	30	100	208,570
70•	• 70	REWAT 45C11Cd	kajpur. Dug well, 1360°from vil- lage adjacent to it Public well.	27.00 1- 1t	3,30	18.60	Clay & kankar OLDER ALLUVIUM	-do- М	DMP/D	1	02	168.435

13. 172. 155		198.155	196.190	224.800
12. 480		180	09 -	360
11.		1		20
2 Ougher EdD/A - rnary		-do- h1	-do-DMP/I = 12/2 -	000
onother rnary		Post ed. Del	•	- Op-
8. Clay 6 kankan OLDER ALLUVI		Granite Post - weathered. Delhi	Granite	ဂ ဝိဗ -
5.30		8.70	5 • 4 O	7.80
2 00		3,15	3.80	3.10
13 11.10 ge.		Dug well, 24.00 west of vill- age near sch- ool on road side, Bhura, Shankar Suthar.	from vill- ege at a distance cf 1/4 mile, Famdan vedan Charan.	Eug well 18.60 south of village, about 2 km. on Jaswantpura road, Ialpat singh S/o Fherusingh Rajput.
fer	ČK K	Dug west age rool col side, Shanksutha	Lug wel from vi ege at cf 1/4 mile, Ramdan Avedan Charan,	Eug well south of village, of 2 km. on Jaswantpu Ialpat si
SIYANZ Lug Wallad 45C16Ha north of villad Sukhright Tara chand Mahaji	JASWANTPURA BLOCK	BHARUDI 45r5Dd	BUGAON 4575Ha	CHANDUR 45D5Tb1
71. 71	SWAN	72. 72	73 • 73	• 74
<u>.</u> t	क	72	73	74.

12 13. 90 143.095		120 124,850	120 259,395	211.885
2 10 11 DME/T		-do-	Pers- 23 ion wheel/ I	. DMP/ - Idle
1 3	5	100 1 100 1	Granite Post Delhi	Clay & Quate- kankar rnary OLDER ALLUVIUM
3,65 12,10 Cle		3,35 12,85 10	3.00 4.84 G	3.35 6.30 C
5 6. 17,00 3.		14.60	13,75	19.80 3.
Dog vell,	NE OF Village akout 1 furlong Ken singh Jelamsingh Rejput.	Dug well, NE of village at akout 1 furlong, Mcdsingh Mchvatsingh Refput.	Dug well, scuth of village akout 1 fur- long Bhartaram S/o Kesha- ram Purohit.	Dug well, 315° from village about 2 furlong IdanmJagtu Chowdhary
$\frac{1}{75}$ $\frac{2}{75}$ DHAN JI	KA BERA 45CBEa	76. 76 DHANSA 45CBAa	77. 77 GOLANA 45D5D3	78, 78 JHAK 45C12Fb

13. 272.930	260,880	232.510	206.220
27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	180	480	
10. 12. DVP/1	Pers ion wheel/ I	EMP/I 29	Quate- DMP/I 25 rmary
3. 10. 12. 12. 13. 13. 13. 14. 10. 12. 12. 13. 13. 13. 13. 13. 15. 15. 15. 15. 15. 15. 15. 15. 15. 15	Clay & Quate- kankar rnary OLDER ALLUVIUM	Granite, Post weath- Delhi ered & fractured.	Clay Quate- with rmary kankar OLDER ALLUVIUM
4.85 2.20 x 3.15	3.00 8.85	3.70 10.77	3,30 8,70
พาน 0 เ	18,35	23,45	22.05
4. well	Dug well, east of village at a distance of 1½ furlong. Rupa, Bijal Singh S/o Valesingh	Dug well, N 80° W. about ½ furlong from village kera Dalo Rao	Dugwell, 25° from temple about 100 mtrs., Dana, Ona Bhambi
19. 20. 30. 32 79. 79. JACONE PURA 45DSFR	80. 80 KEELA 45D5Cd	81. 81 KORITA 45D5AC	82. 82 MANDOLI 45C12Cc

1. 2 . 2	83. 83 MODRAN Dugnell, 45C8Ad 320°from Rly. station about ½ km. Krishna Manak Mali.	84. 84 MURTARA Dug well, SILLI NW cf 45C8FG village about 1/4 km. Thura Gonga.	85. 85 PANSERI Dug well 7 45D6Cc N 8C° E. about 1 km. from village, Shersingh S/o Ratansingh Thakur.	86. 86 PAOLI Dug well,35 45D5Gb from village about 1.5 furlong Foma, Rupa
i soi !	14.00 cm. fanak	16.40	7.60 cm. lage, n	well,35° 14.70 lage lt furlong s,Rupa
100	2.55	3.35	3.40	4.15
7	7.80	13.20	3 4 8	6.85
1 .1	Clay with smed medium OLDER	Granite Post weathered Delhi	Sand, prine, relay with rock fragment, OLDER ALLUVIUM.	Granite Post Delh
وا ا	Quate- rnary M	Post ed Delh	Quate- BM/I rnary t,	Post Delhi
91011	Quate- BMP/I :-	DMP/I	BM/I	KRX EMP/I
11.	A	•	60	· t
€ 1 C7	360	120	40	120
13.	140.450	190,605	247,330	184,215

1	٠ : :		1 2 64 74	9	7-	8. 12. 12. 12. 12.	٠ ت	10.	11.	12.	· · · · · · · · · · · · · · · · · · ·
7, 0,7	FC: KAL 45D9A C	Supering Sup	11.60	ж. х. 1. 90	4	Cloy & Racker OLOBR ALLUVIUM	Suatt ernary	ы <u>Б</u>	1	1	221.45
6. 6 E.	45C12Banear 45C12Banear vilia Vena Jama Jama Jama	Bug well, anear viliage Vena, Jama	22.15	3 3 3 3 3	11,95	0 0 1		1 0 0 1	i	09	150,790
•	89 AJODAR 45D2Gc	AJODAR Dub-cum- 45D2Gc Jore, due S.E. about 1/2 km. from village Jivaji Bhurji Chowdhary	8 70	3 2 3 2	4 0 4	Sand & gravel YOUNGER ALLUVIUM	-do-	DMP/ Idle	27	1	216.140
•0	90 ,ALRI 45D5Ab 3	Dug well, ba N 80° E about 1.25 km. from village, Tulsaji Motaji.	22,00	2.90	9.10	ф О	- 00	DMP I I	29	009	164.550

•	347.6	171.9	162,5	222.0
	: 7 	15	09	30
F.,	53	60	30	27
: 다	э С. Н	Buck- 29 et.∫[)	BM/I	Buck- 27
101	Quate - P. N. rnary I	Post dDelhi	:, -do- BM/I	ф ф
! ! ! ©!	Sand, Q coarse r YOUNGER ALLUVIUM.	Granite, Post weatheredDelhi & frac- tured.	Rhyolite, weathered, jointed.	Granite, weathered & fract- ured.
· · · · · · · · · · · · · · · · · · ·	23 ° 0	6.25	88.	3.15
: : :	0 5 0	2.15	2 85	2.20
ا ا ا	7.00	11.95	11.60	8 00
! ! !	Dug.cus. bore, N 30° W about 1km. from vil- lage Var- da S/o Harji Koli.	Dug well, 11.95 in side village, near Hanuman ji ka temple Public	Dug well, N 20°E akouț 1 km. from village, Kheta S/o Premaji Chowdhary	Dug well, in side village, Public
5	1. 91 BAMANWARA 45D2Bc1	2. 92 BARETHA 45D1HC	93 6E ATWARA 45D1Dd	94 DADOKI 45D5Bb
~i	•	. 92	e e	4 94 94
_	=	2	8	₹*

3		~		•	7.	•	•	10.	11.		
)	450.27.00	both the point of the point of the point of the public public well.	119.00	2.30	13.85	Sold A D grayed Y YOUNGER ALLUVIUM,	aeto raig	7.57.d Q	e Log	09	.1
• 96	96 DHANWAFA 45D1Ga	A Dug well, due W just out side the village, Arjunsingh Thakur,	20.80	3.10	13.07	Sand & gravel Younger ALLUVIUM	-do-	I&D	1	24 0	151.295
97.	97 DIGAON 45D1Ba	Dug well, 49. N 40° E from house of Ram- chandra Sarpanch about 2 furlong, Public well	49.50	1.50	45.00	Sand & clay & kankar with little gravel OLDER ALLUVIUM	- do-	Buck- et/D	30	0.80	114,455
8		98 FATEHIURADUG Well, 55°N 14.95 45D6Cb about 100 Mtrs.from village Dharma Gogaji Hargara.	14.00 N	5 2.40	8 35	Sand & -do- kankar with clay and few gravel pieces,OLDER	-do- vel ouder	EMP/ I	88	240	250,885

13	±86 ,695	206.165	170,985	246,325
12 13	120	50	50	30
	Spro & Pucce Teb / 26 clas proce Not with few grayel OLDER	Granite, Post Buck- 27 weath- Delhi. et/D ered and fractured.	Sand, clay Quatdo-29 and erna- kankar ry. with little gravel OLDER	ALLUVIUM. Sand & -dodo- 29 gravel YOUNGER ALLUVI UM.
9	1,90 10.75 5200 6 clay with 4 gravel OLDER ALLUVI	2,55 3,80 Grar Weat erec and frac	1.90 23.80 Sand, cand kankal kankal with little gravel OLDER	2.35 13.90 ALL gra- gra- YOU ALL: UM.
9 1 1 5 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Woll a constant of the constan	1 8,80 ilage imple, well.	101.101 HARSHWARA Dug well, 36.10 1 45D1Ac due S. about 1/2 furlong from village Public well.	102.102 JETPURA Dug well, 17.00 2 45D2Bal inside village, Public Well.
			- Charles and the	Section 1986 Annual 1986

15 15 15 15 15 15 15 15 15 15 15 15 15 1	147.055	105,850	188,980
350 13°	20	ı	25 1
11.0	30	Buck- 30 et./D	30
	Bit/L		-op:
Prince To the Control of the Control	-ਕੂ: ਯੂ	- 0 -	te Post redDelk t-
8 VIII With grave: and for pleces kanhar YOUNGSR	Sand & clay with little gravel OLDER ALLUVICM	900	Rhyolite Post .weatheredDelhi & fract-ured.
10 • 01 • 01	80 90 100	24,77	6.15
105 3.05 5.0c.	2.10	2.20	2.40
50°.	21,55	42.55	19,00
Log W. C. C. duc W. about 3/4km. from village. Bude S/o Vaged: Kumar Kumar	Dug well, due S.from temple about 50 mtro Parbetter Motinate	Dug well, due E. about, 1 furlong from vill- age near	S Dug well, due E.about 1½ furlong from temple Public
Spour			45D1Ec
104 104 105 105 105 105 105 105 105 105 105 105	104.104 KARDA 45D1Ea	105.105 KORKA 45D1Ab	106.106,

10 _ 11 _ 12 _ 13.	5.			Euch- 29 25 et. DE. DMP 30 120
-67810	09.6	1.70 15.27 Sand & clay with few piece of karker OLDER ALEUVIER	2.60 1.70 Sand -de gravel with few kankar YOUNGER ALLUVIUM.	2.90 3.70 Fine and-do-with clay OLDER ALLUVIUM.
501	9	10.1.108 PAL Dug well 28.35 45DIFb due S. about 1 furloss from village. Public well.	109.109 ELMPUR Dug well, 7.00 45D6Ad N 80° W about 1½ furlong from village,Nar- naji Miyaji Chawdhary.	110.110 Exilones Dug well, 12.30 ; 45D1Id N 5°Wfrom Raniwara Kala about 1 km.Pirsingh Devji

1 - 2 -	101 101 101 101	!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	1 1	ol ol	7	81	9 - 10	ī	11 - 1	3.2 1	13.
111.111	111.111 RATANFURA 45D2DG	• • • • • • • • • • • • • • • • • • • •	18.50	3.20	900	Sand, fine to medium YOUNGER ALLUVIUM	Onate - DMP/ rnary I		59	009	175.140
112 ROPSI 4501G	''	kajput Dug well,S 20°E.about 1 furlong from village, Public	10.70	2.40	6.62	Granite, Post B weathered &Delhi. fractured.	Post d &Delh d.	Q W	м	30	155,450
4516 4516	Ac1	Dug well, just out side the village due NE, Public	8 65	1.80	3 65	1 0 0	0 0 0	Buck- et/D	29	15	245.065
514. 114	SEWARA.	Dug well, N.65°W about 1 furlong from temple, Public well	47.90	1.60	31.20	Sand & gravel with kankar OLDER	Quate rnary 	Subm- ersi- ble. pump/D	90	360	151.720

ر. ای	~	7	5 6 7	۰	7	60	ر : :	10	11		13
	72	thesty village near residence of Mola Kalbi, Public well.	13.75	9 . 6		Rhzelle fer 8:08. weathered.slui et./D	्यात्र । स्राप्त । क्ष	stoj	• • 0	30	158. 220
ANC	ANCHORE BLOCK										
	40P10Dd	40P10Dd Dug well 40P10Dd N 50 E. about 1 furlong from village, Pannesingh Rajput.	10.90	2,05	09*9	Clay & kankar OLDER ALLUVI-	Quate- BM/I	BM/I	53	0 E	38.00
113.1	17.117 AGDAWA 40P9Ab	Dug-cum- bore, due N. about ½km.from village, Hira S/o Guman Mali.	12,60	1.40	9.80	Sand, fine YOUNGER ALLUVIUM	Quate- BM/I rnary. 1.	BM/I	30	09	49.40
118.	18. 118AMLI 4CP9Ia	Dug well, S. 55E. just outside the village Public well.	4.75	2.10	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Sand -d fine with clay, OLDER ALLUVIUM.	th th	Buck- 30 et Idle	30		38.90

CI,	9	4	5	9	7	8	6	10 11	11	12	1,
119. LIS ANKHOL	40016Fa	Dug well, in side village, near resi- dence of Amararam Rebari, Public	4.15	2.50	2.92	Send fine, NGER ALLUVIUM	op I E	Buck- et/D	58	ഗ	64.80
900.130	10.120 A RNAI 40P13Ed	Dug well, due E. out side the village, Public	30,70	1.45	25,30	Sand, -do- Clay & kankar with li- ttle gravel, OMDER ALLUVI	Sand, -do- clay & kankar with li- ttle gravel, Omdor Alluvium.	-dob	1	04	81.120
101.121	ARWA 40P5Dc	Dug vell, due & W about ½ km. from village- school, Public well.	6.40	1.10	t	Sand, fine YOUNGER ALLUVIUM	υ Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο Ο O	-do- D&L	53	10	35,005
132 • 122	BAWARIA 40P9Fd	Dug well, due E just out side the village near Bargad tree, Public	ល ម •	2.40 4.87 x 2.05	4.87	Clay & -do- kankar OLDER ALLUVIUM.	-do-	Buck- et/D	6	30	38.40

l m	1 2 3 4 4 123 123 BHADEUNA	Dug well,	13,45	1.60	2	9-	9 10 10 10 10 10 10 10 10 10 10 10 10 10	11. - 27) 	
40P	1304	due NE about 100 mtrs. from village, Public	3			& few rn kankar, OLDER ALLUVIUM.	rnary et/D			
3H 401	124.124 JHAWATRA 40P6GC	Dug well, due N. about ½ furlong from village, near temple.	2,85	1.50	2,35	Sand, -do- fine YOUNGER ALLUVIUM.	-00	53	15 15 15 15 15 15 15 15 15 15 15 15 15 1	16.005
10.4 0.4	125.125 3INJROL 40P ₁₃ Gb1	Dug well, due E. about 1 furlong from village, Public	17.60	1.70	13,34	Sand, fine-do- with kankar, clay & gravel OLDER	i op	98	70	73.100
B 60	126.126 BINJRO KP GOLIA 40P ₁₃ Dc1	N.15°W about 1 furlong from village, Public well.	18,25	1.40	12.10	Sand -do- medium with clay OLDER ALLUVIUM.	000	27	4	08 . 89

13.	35,00	37.60	10.570 T.O.C.	48.10	37.20
12	52		S C C C C C C C C C C C C C C C C C C C	10	Mea Ore 5
11	6, 2	53	32	1	53
10	Buck- et/D &L	Buck- 29	9	000	000
6	Ouate- rnary. R	-do-	do- dw.	-do-	op I
8	Sand, fine, YOUNGER ALLUVIUM	Sand, fine with clay, OLDER	Sand fine YOUNGER ALLUVIUM.	Sand fine with clay, OLDER ALLUVIUM,	ត់ 0 1
7	3.75	5.05	2.60	6	4 6 5
9	1.70	1.25	Irreg- ular.	1.50	2.15
ហ	5,05	1 6.40 a-	1,2,70	0.65 n. L- aram	Dug well, 4.80 due E, just outside lilage near chool, Public ell.
4	Dug well, o in side village, Public	128.128 CHITALWANA Dug well 6.40 40P9Ec S.50°W from villa- ge near Rest House		Dug well, 9. b N.40°W. about 1km. from vill- age, Chokaram Bisnol.	UDA VJ
3	BIRAWA 40012Fb	CHITAL) 40P9Ec	CHOTA AKODIA @OP6Aa	. DEDUA 40P13Bb	DHANI HEMA 40016C
1	127-127 BIRAWA 40012E	128.128	129.129 CHOTA AKODI @OP6A	130.130 DEDUA 40P13	131,131

1 2 3	•		*	•	7	1 0	وا ا ا	10 11		1 12 12	. 13x .
32.132 DANTA 40P13:		Jug well due W. about I furlong from vill- age, Public	26.65	1.60	20.62	and edium ith lay LDER	Quate-	Buck- et/D		50	64.40
13,133 DUC	Dugawa 40P14Ha	Dug well, due18.05 S.about Miurlong from vill. açe, Public	18.05	2.30	1.60	Sand, clay & kankar with little gravel OLDER ALLUVIUM	-qo-	-0p	9	25	120.80
34. 134DUNGRI 40PSGb		Dug well, S.40°E. about 1 furlong from village, Public	25.60	0.95	1	Sand fine YOUNGER ALLI V VIUM	-op-Wh	* O U	32	0 #	33.40
.35.135 GAJ	gardali 40P14A b	Dug well, N.15°W. akout 1 furlong from village, Mcmansa S/o Sahibsa Musalman.	18,75	2.10	13,20	Sand fine with clay OLDER ALLUVIUM	th do	DMP/I 24	24	240	56 •59

13.	00*69	925 9.0 0.0 0.0	29.15 T.O.	. 57.10
12	240	ហ	0	Meaga S.
11	MP/I 27	Buck- 30 et/D	-do-	-do-
9 10	-Quate- DMP/I 27	6 0	* O D *	ੈ ਉ
8	Sand medium with clay& kankar & few gravel OLDER	Sand, fine YOUNGER ALLUVIUM.	Sand, fine YOUNGER ALLUVIUM	Sand, fine with clay. OLDER
7	16.43	4 0 80	2.10	2.60
ဖ	2,45	2.20	2 • 15	1.20
មា	Dug well, 28.23 due N.40°E about 1km. from vill- age, Wakfaji L/O Chelaji Kalbi.	Lug well, 6.20.5.50°E. about 30 Mtrs. from Kul Mukteshwar Mahamandir Kahadevji	Dug well, 4.45 N.30°W. about 1 furlong from village, bell.	Lug well, 4.70 due N about from temple near school lublic well.
	6 HADEWAR 40P13FB2	137.137 HETIGAON I ub well, 40%9Bc1 5.50°E. about 30 P from Kul Mukteshwai MahaMandii	138,138 JANWI 402,9Cc	139,139 JHAB 400163d
•	136.13	137.1.	138,1	139.1

1 (2)	64 1	1 1 1	ν) - 	ا ا او	7	1 1 01	9 10 11	엄	11.	32	TET
10.140	0.140 JODHAWAS 40016331	Lug well, cue west, about 1 furlong from temple Fublic well,	6 6 5 5	2.55	2 • 95	send fine with clay OLDER ALLUVIUM	Quate_ rnary	Buck-et/D	58	04	58.940
11.141	40P9Dd1	Ing well, N.70°W about h furlong from temple, Fublic	7.60	1.80	2.10	Sand, fine YOUNGER ALLUVIUM	• op ·	op •	99	15	42.050
42 • 142	42.142 KHARA 40P13Hc	<pre>Lug well, E.60°E. about 1 furlong from village Iublic well.</pre>	47.65	1.30	33,33	Clay & kankar Older Alluvium,	- op	B.M./D 26	26	0 4	101.58
43 •143	KHEJDIYA 40PSCd	43.143 KHEJDIYALI Kacha well, 2.95 40P5Cd 5-30° E about 1 furlong from village, Public	311,2,95	Irre gular	2.60	Sand fine YOUNGER ALLUVIUM	- QO	Bucket/32 D	t/32	v	16.015

1 2	3		5	9	7	8	6	10	11	12	13
144,144 Lileur 40P10G	Δ .	Dug well, due W. about 3/4km. from village, Jona S/o Naga Chow- dhary.	15°00	1.90	9.11	Sand, C fine clay OLDER ALLUVIUM,	Quate- DMP rnary Idle	Cdle	•	1	43,45
145.145 MELAWAS 400121G		Dug well, S.20°E about ½ furlong from village Public	O O O	1. 2. 5.	2,75	Sand, fine YOUNGER ALLUVIUM.	op s	Buck- et/D	28	55	34.80
146. 146	naldtra 40P6Gc	40FGC pond, due N. 3.5 about % furlong from village Public well.	11ar 3.55	Irre- 2,80 gular.	2.80	Sand, "fine with little clay Younger Allunder	do ith k R	· 이 한	6	00	19.610
147.147 NIEAW 40016	NIEAW 40016Ia	Dug well, 14.40 1 S.45° W. about 1 furlong from village Madho #/o Rupa Kalbi	14.40 pa Kall	1,55	10,82	Sand, Quate- medium rnary. Kankar & gravel With clay.	Quate- DMP/I rnary. &	I/AMO	53	120	65,500

7	4		2	9	7	8	6	10	11	12	13,
148.148		Dug-cum- bore N.8C°E about ½m,from village Mora S/o	23,35	1,95	17.10 Sand, kanka grave clay OLDER	Sand, kankar, gravel & clay OLDER ALLUVIUM,		Quate- DMP/I 29	66 7	120	65,500
	400 PLADAR 40014Ad2	Dug well, N. 35° Y about 1 29. furlong from village Public well.	29.40	2,25	10.20	Sand & clay with gravel. OLDER ALLUVIUM,	်	BM/D	27	30	60,595
\$50. 150	\$50.150 RAMPURA 40016Bd	Dug well, N.50°E. out side the vil- lage, Public	3.60	2.40	3,25	Sand, fine YOUNGER ALLUVIUM,	op 1	Buck 28 et/D	88	Measure and the second	60,505
151	GOLIA S.10°E. 40P9Gc abcut 1/ furlong frcm vil Public well.	S.10°E. abcut 1/2 furlong frcm village Public well.	3.05 age,	2.10	1.70	Sand, fine with clay, OLDER	10p	် တု	53	55	32.00

	85	N	o.	50
13.	16.785	57.72	38.40	120.20
12	ಗೆ ಇ ಇ ಕ ಕ ಕ ಕ ಕ ಕ ಕ ಕ ಕ ಕ ಕ ಕ ಕ ಕ ಕ ಕ ಕ	360	50	•
11	က က	•	88	26.5
10 11	Buck-et/BM	EMP/I	Buck- 28 et/D	190- 191e
0	nare- nary	-do-	Sand, fine-do- with clay, OLDER ALLUVIUM,	_do_ lay vel M.
ထ	Sand, O fine r YOUNGER ALLUVIUM.	Sand, fine with kankar & gravel OLDER ALLUVIUM.	Sand, finewith clay, OLDER	Sand, medium with clay & gravel OLDER ALLUVIUM.
7	09 ° 6	11.74	4,30	25.17
φ	Irre- 3.60 gular.	1.40 11.74	1,50 4,30	1.80
so.	4.10	15.90	5.80 no1.	33,05
	Kacha well, 4.10 due 6. about 1 furlong from Nimtres, Hagnlo 6/0	Dug well, due 8.40° W about 197m-from Golia.	S.50°W. s.50°W. sbout 14 from vill- lage, near road, Har Lal S/o Bherlu Bisnoi.	Dug well, due N. about 50 mtrs.from village Fublic
ъ ф	AKCIA I DESNI OPSDD	Sanchore 40P13Cd	154.154 SANGADAVADUG 40P9Hb 8.50 abou from 1age road Lal	SANKAD 40P13Id
1	152,152	163,153	154,154	155,155

7	3	-3	2	9	7	8	Ð	10	11	12	13
156.156 SARNAU 40P13I	Sarnau 40P13ID	Dug vell, due V.out side the village, Public well,	73,10 2,10	2.10	25.62	Clay & kankar OLDER ALLUVIUM	Quate- rnary M	Buck- et/I dle	29	8	105.7
157.157 SHILU 40P10	SHILU 40P10Ec1	Dug well, ildue 5.about i furlong from vil- lage, Public well (P.H.E.D.)	22,25	3,00	8 · 50	Sand, fine with clay OLDER		Su. Pump D	r	135	58.10
158.158 SIWARA 40P9Gd	SIWARA 40P9GG	Dug well due N.about 100 mtrs. from village Public well.	7.70	2.40 2.30	6.03	Sand, fine with clay OLDER ALLUVIUM	i op	Bucket	•	02	49.80
159. 159suntri 40P5Ib		Lug well, N.10°E about 30,mtrs. from village village wall.	4 05	1.50	2,75	Sand, fine YOUNGER ALLUVIUM,	м. М.	-do-/D-	30	15	29 68

1 2	,	4	22	و	7	8	6	10 11	11	12	13.
160,160	SURAAN 40P14GG	Dug-cum- bore, due N. 10°E about %Xm.from village Vazo S/o Kevda Kalbi.	13.50	2.10	4.65	Sand, C fine r clay & kankar few gravel, OLDER	Ouate- DMP/I 25 rnary.	DMP/I	22	360	133,305
161.161 TAMFI 4029Hd		Dug well, 2.9 S.15°W about 50 mtrs. from village, Public well.	2•90 :s•	1.80	1.00	Sand, fine with little gravet clay OLDER	. do.	Buck- 29 et/L	53	50	25.105
162. 162.	162.162 TENTRUE 40P13la	Dug well, N.30°W. about 200 mtrs.from village, Public	7*00	1,95	6.64	Sand, fine & clay OLDER ALLUVIUM,	-do-	Budk- et/D	*	50	4 3 •00
163.163 VANK 40P10Ad	VANK 40P10Ad	Kacha well, 3.00 S.60°E about 1 furlong from village, 6cmm 8/0 Bhika Bhambi		4.85 Irmeg- ular.	3.12	Sand, fine YOUNGER	ပ် ပု	BM/I	53	s	28,145

		137.910	106.110	134,390
13.	1	13	1	70 1;
12	•		1	
11	1 0	56	. 56	56
10	Buck et/ Idl	Idle	0	BM/ D&L
6	Quate- Buck- rnary. et/ Idle. M.	-do-	9	Clay and kan- kar, -do- OLDER
σο	Sand with clay OLDER ALLUVIUM,	Clay & - kankar OLDER ALLUVIUM.	Sandy clay & kankar OLDER	
7	1	3.00 8.70	1.70 9.95	30,50
9	1,65	3°00		2.40
s.	38 . 65	11.10	13.25	32.05 ge
	Dug well 3 11ned,S. 60 Wfront of village (outside the village) Public	Dug well, 20°from village near PHED water tank	Public well, Dug well, 30 from village about	1 furlong, Public well. Dug well, in the centre of the village
4	(d)	165 BAKRA 45C7 ID	166. 166 BISALA 45C4Ga	167.167 BAUTEA 45C3Ed
•	164.164 WIROL 40P14		166.16	367. 16

1 2	3 4		5	9	7	8	6	10	11	12	13
168.168	168.168 BISANGAK 45C11Ad	from from village about 1km. from water tank, 1.am singh S/o Balwant	18.80	4.20	11 11 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15	Clay & Q kankar r OLDER ALLUVIUM.	Quate- rnary. M.	EMP/I 28,5	28,5	400	1.9.600
266.169	169 CHARAU 45C7Ca	Dug well,135°15.50 from village 3.of taila Eurana road Tulsaji	35°15.5 Ge	0 3.25 8.50	8 50	Sandy clay & kankar OLDER ALLUVIUM.	д н ж	DMP/I 26	56	295	116,540
37 0.170	170.170 DEDHAL 45C4Aa	Pug-cum- bore,N. 45°W Ebout 12jan. from village Noti 5/c		1 • 60	4.76	Sand &do- grevel YOUNGER ALLUVIUM.	M. Ado	_do- Idle	88	1	74.680
71.1.	171.171 DAHIWA 45C3Ea	Dug well, S.45°W about 1½km. from vil- lage, Sopa S/o Javaji	29.50	2.60	27.40	Sand, fine with clay & kankar & gravel.	-do- ey r 1.	-0 -0	53	•	118,890

1 2	3	4	rs.	9	7	8	6	10	11	12	13
172,172	DETA 45C4Ga	Dug well, 2550 from village on river bank Temeingh S/o Ajaysingh Rajgut.	11.90	90 0	7.80	Sand and gravel. YOUNGER ALLUVIUM.	- GO-	DMP/I	ı	446	101,48
173.173 GOL 47C7	<u></u>	Oug well, 9.3 230° from village, on vest of Sorita to Jalore road Surej Surej S/o Heerchand Guresa.	9.35 lore	2.80	06.5	Sand & -gravel younger ALLUVIUM.	т ф ф •	EMP/I 26	98	384	125,460
474.174	GOLIA 45C3 Ib	Dug well, 13.60 200°from Meglwa water tank,340° from Golla vill- age, Vest of Sayla-Sarnau road, Kesar singhS/o Vijaysingh Rajput.	13.60 11- Ysingh	2.40	10,30	Clay & kankar OLDER ALLUVIUM,		DMP/I 28	58	446	106,440
*175.1 75	175 HARMU 45C4Da	Oug-cum-bore,11.56 N.30°E about 1 furlong fro village, Pabudan S/c Sardan 31 charan.	bore,11.56 furlong from Pebudan 8/0 1 cheren.	2.80	7•00	Sand & G gravel YOUNGER ALLUVIUM.	-op-g	DMP/ Idle.	28		84.840

~	3 4		5	9	7	8	6	- 1,	11	12	13.
•	176.176 KHETLAVA 45C3Fal	Duc well 15. N.70°E just out side the village, Vijaysingh S/o Sohensingh Rajput.	15.05 .ngh	5 •60	10.13	Clay& Q kankar. r OLDER ALLUVIUM.	Quate- rnary 1.	DMP/ I&D		9 2 0	96,170
-	45C7Hc	Dug well, 317° frcm hill top 3 from village, ad to village, De village, De	14.10 60° jacent visingh ngh.	2,90 8,10	8.10	1 Op	• OP -	EMP/I 25	25	433	136,330
80	45c7Ec	Dug well, 340°from centre of village adjacent to village Public well.	27.90	2.15	25.63	Sand, clay & kankar OLDER ALLUVIUM,	- - - -	d/ma 13	56	06	149.220
o	45C3Ia	Dug well, opposit Post office in the Village Public well.	11.95	1.55	9 9 9	-qo	-op	B& D&L	29.5	10	110,590

11 12 13	90	- 90 123,150	28.5 210 150.400
10	BM/ D&L	BM/I	EMP/I 28.5
6	Quat- ernar M	-do-	្ត ០ ប
ထ	Sand, clay & kankar OLDER ALLUVIUM	Sand & _ gravel YOUNGER ALLUVIUM,	1 00
7	27.15	ស ម • •	11.50
و	2.90	2.30	2.70
5	1 29.10	9.40	19.65
1 2 3 4	180.180 MOKNITHERA Lug Well 45C7Bb from vill- age adja- cent to lt, Publ- ic well.	181.181, OTHWARA Dug well, 45C7Ed 290° from village, south of Sayla- Jalore road, Basantsingh Jeevsingh Bhumia.	182.182 PAHARPU.A Dug-cum- 19.65 45C11Ad bore, 150° from Mori hill most of jalore Sayla road Kanaji S/o Lakmaii Bhambi.

)	135,970	146,500
13	· ·	13	4.
12	1.	250	50
11			88
10	Idle	DMP/I	d/wa
6	Quate- rnary. M.	-do-	op .
8	Sticky clay & kankar OLDER ALLUVIUM	Sand, -d fine with kankar OLDER ALLIVVIUM	Sandy clay with gravel YOUNGER ALLUVIUM
7	12,15	N. S.	7.30
9	2,50	2,50	2.00
5	21. 55.	7.30	12.90
	Dug well, near Maha- deo temple in the village village Public well.	Dug well, 270°from viljage, north of Sayla to Jalore road Okhash Kheema Bhil.	Dug well, X 12.90 300° from village, adjacent tc it, Fublic well.
4		Dug 2770 vill nor cof to cor cok cok khe Bhi	
3	183.183 PANTIERI 45CBAb	184.184 RANTUJA 45C7Gd	185.185 SANPHFTA 45C11BC
2	183	184	185
	183	184.	185.

2 3 4	4	5	و	7	5 6 7 8 9 10 11	6	10		12	12 13,
186 SAYEA- 45C7Fa	186.186 SAYEA-I Dug well, 10.60 3.80 7.25 Sand & gQuate- BM/I 25 45C7Fa east of gravelYOUNGER nrary Sayla-Jalore road near village, Kesaji Jesaji	10.60 ee	3.80	7.25 grave	Sand & 1 1YOUNGER ALLUVIU	gQuate- nrary M.	mm/I	22	130	121.130
187 SAYLA- 45C7Fa	Puronit. 187.187 SAYLA-IIDug well,Meg-7.90 45C7Fa walo-ki-Basti Public well.	19-7.90 iti	2.05	ı	10p	ę P	Idle	f	ı	121,130
138.188 SIRANA 45C3Ad	Dug well, N.25°W. about ½km from vill age, Ramsi S/o Bhims	08	3.60	14.70	3.60 14.70 Clay & -do- kankar OLDER ALLUVIUM	-0p-	DMP/I 32	32	O 88 e8	99,180
189.189 TILORA 45C4Da	9 TILORA Dug-cum-bore 7.05 2 45C4Dal S.35.W.about % furlong from village, Devati Mali.	re 7.05	2.50 5.87	5.87	Sand & -do- gravel YOUNGER ALLUVIUM.	- P	-do- 30	0	360	82,860

(A) STATIMENT SHOWING THE DETAILS OF EXPLORATORY DRILLING CARRIED OUT I DISTRICT DURING THE PERIOD 1976-77 TO 1982-83. Panchayat Year Type Depth Pipe SWL Draw- Dischar Quality of of drilled assy. Now-in down rge in water const. well in ered in mire in Market Depth Pipe Sanits of drilled assy. Now-in down rge in water const.
0

		(A) STATIMENT SHOWING DIETRICT DURING	ATIMENT SHOWING THE DIETRICT DURING THE	ING THE		DETAILS OF EXPLORATORY DRILLING CARRIED OUT PERIOD 1976-77 TO 1982-83,	RATORY O 1982	DRTLLT 83.	NG CARRI		NI	
S S S	Village	Panchayat Year Samiti of cons' ruct	Year of construction	Year Type of of const. well/ ruction.Ex/Ob/ Pz.	Depth drilled in metres.	Pipe SW assy.low-in ered in mti mtrs.(in a.g.1.)	SWL -in mtrs.	Drawdown in mtrs.	Dischorrge in M/day.		٠ ١ د	y of F No3 Mg./ Mg/ litre.litre
i di	2 1		d		9	7. 8.	1 00 1	6	10.	11.	32.	13.
-	Bhingwara Ahore	Ahore	76-77	· E	70.00	68.60 (10"x8")	6.61	3,88	864	1800	1.32	15.00
2.	Sankarna	Jelote	77-78	ជា	26.00	51.37 (10"x8")	3,65	8.18	216	6750	2.40	Traces
en •	Jaitpura- Ahore Jogni	Ahore	77-78	(e)	77.00	77,00	7.60	2.00	736	10700	2.40	15.00
4.	Umedpura	2		드	81.00	82.00 (10")	9.05	23.50	592	2711	2,00	Tr.
ທີ	Saila	Saila	=	2 2	175,50 (C	175.11 (12"x8"x6")	8,00	5.00 1152	1152	1320	1.60	
•	Bautra	=	=	t _i a	290.00	251.00 (12"x6")	30,00	4.00 1008	1008	880	Tr.	55,00
6	Rama	Ahore		<u>ب</u>	53,00	51.70 (10"x8")	8.00	11,85	320	3796	ı	75.00
o	Raniwara	Raniwara	=	덦	51.00	52.00	7.40	3,10 1008	1008	1080	1.60	15,00
φ,	Bhadrajun Ahore	Ahore	=	ம	53,50	ı	Abendo	ned du	Abendoned due to saline formation water	ine form	nation	water
10.	Narsana	Saila	n.	E	108.00		Abando	ned du	Abandoned due thm poor discharge 6550	or disch	large 6	550
11.	Bhinmal	Bhinmal	=	ចា	00*09	25,00	5.50		9	10350	1,00	15,00

i															0	0	
13.	228	28	10	· F	25	110	t		125	tons	25	10	rge.	1	5.00	10.0	75
12	1.04	2.5	7.00	ŧ	0.40	0.80	2,80		4.00	formations	2,80	5.32	discharge.	7.68	ı	ı	5 *8
11.	4500	5555	1650	1	16200	6200	3400		1470	8.00 Abandoned due to hard	6400	1080	to poor	35000	480	360	5400
11 01	216	176	184	736	968	576	536	water.		ed due	7.50 4.80	1344	ed due	160	269	592	576
ام	0.0	2.45	17.00	2,00 736	ı	2.00	7.75	cmation	10,38	Abandon	7.50	3.05	Abandoned due	1	2.00	•	
01 001	33.0	2,15	7.8)4.20	10.00	15,00	4.75	med 2.00 saline formation	6.00	8.00	49.50	8.30	4.00	8,00	5,15	13,00	14.50
7	45.00	31,00 (6")	75.00 (10"x8")	31,50(8")4,20	130,50	162.00 (10"x8")	98,00	Abandoned due to sali		2 1	275.75 (10"x6")	78.50 (10"x6")	1	20.60	31,10	55.00 (10")	278.00 (10"x6")
9	49,50	30.00	75.00	31,00	300,00	280.0	101,00	30.00	00*66	9.05	285.00	80.00	19,00	23,00	33,00	57.00	300.00
ائ ائ	0	0	(4)	=	=	=	= =	:	=	=	=	=	2	0	E,	=	=
4-1 	77-78	=	78-79	=	s	I	± 2	:	# #	=	79-80	=	=	=	ra 80 - 81	3	=
ا ا ا		Bhinmal	Jalore	Jalore	Sanchore	3	Jalore	Ahore	Jaswantpura	ra #	Raniwara	Ehinmal	Ahore	¥	Jaswantpura	Raniwara	Sanchore
7	12. Sankad	13. Bagora	14. Rajanwadi Jalore	15. Siyana	16. Hariyali	17. Meda	18. Bagra	Raithal	20. Kolar	21. Jaswantpura "	22. Degaon	23. Modran	24. Bhuti	Tarwara	26. Panseri	27. Jaitpura (Baddaon)	28. Pladar
1	12.	13.	14.	15.	16.	17.	18.	19	20.	21.	22.	23.	24	25.	26.	27.	28.

44	2	6	4. 	ا ای ا	9	7	8	6 1 1	10	111	12	13.
29	29. Punasa	Bhinmal	80-81	Ωı	300.0	101.00	20,50	ı	432	1410	1,32	25.00
30.	30. Daspa	r	81-82	口	310,00	198,00	19,12	9. 00	737.6	0006	0.44	1
31.	BhirmalGolia	lia "		2	116,00	117,00	17,50	8.50	396	3400	3.60	09
32.	Balwara	Saila	= '	=	127.00	122.50	6.50	ı	504	15300	i	ı
33.	Dungri	Sanchore	=	缸	100,00	97.00	25.00	, t	129.6	40000	3.20	15,00
34.	Korita	Jaswantpura	ra "	=	57.00	6.50	8.00	1	144	6200	7.60	15,00
35.	Khanpur	Bhinmal	=	2	57.00	9,50	8.00	4.21	288	2000	1.08	10,00
36.	36. Chatwara	Raniwara	=	=	47.00) 09 * 60 (" 9)	Abandoned	due	to poor	discharge	ə b.	
37.		Jaswantpura	ra "	=	10,00		-	due	to compact formation	act form	ation.	1
38°	Jodhawas Kuaber	Sanchore Saila	= =	o =	305.00 221.00	284.70(4") 219.85	4") 1.75 26.35	2.0	320 6576	3000	1.60	15.00 10.5
40.	Paoli	Jasv antpura	ra #	Δ,	27.00	(4") 9.90	10,50	ı	288	1750	7.00	410.0
41.	41. Batera	Bhinmal	82-83	មា	305,00	288.68 (4")	4.10	•	576	7500	: I	ı
	4	B.Statement Jai	NT SHOWING THE DETAILS JALORE DISTRICT DURING LUNI BASIN SCHEME.	SHOWING THE ORE DISTRICT LUNI BASIN		OF EXPLC THE PERI	EXPLORATORY DRILLING CARRIED FERIOD(1978-79 TO 1982-83)	RILLIN 79 TO	G CARRIE 1982-83)	OUT	N	
42. 43.	Janwi Golana	Sanchore 80-81 Jaswantpura81-82	80-81 ra81-82	田 =	300 57.0	Abandon 12.0	Abandoned due to 12.0 7.80	to lack	of 14.	granular zone. 40 1680 2.	ne. 2.8	3.5
44.	Dahiwa	Saila	82-83	=	276.0	241,85 (4")	5.80	•	792	1760	1.20	45

	1 2	3	4	5	9	7	8	6	10	11	12	13.
45	45. Chajjala Bhinm	Bhinmal	82-83	تعا	315.0	287.25	33.0	1	790	14700	0.1	55
46.	46. Alwara	Saila	£	=	0 ° 0ἀ ε	288.80	10,35	10.0	576	1600	0.80	30
47.	47. Bingrol ka Sanc Golia.	s Sanchore	±	2	304.0	285,13(16,00	2.0	1072	12000	0.80	40
48	48. Ratanpura (Jakhri)	Raniwara	± .	ធ		41.0	5,50	ţ	532	1102	1.20	45
	C.STATEMEN	C.STATEMENT SHOWING THE	THE DETA	DETAILS OF	BORE HO	BORE HOLE DRILLED UNDER FAMINE (PERIOD 1969)	D UNDER	FAMINE	S (PERIO	(6961)		٠,
49	49. Bhagli	Jalore	1969	3	0.66	63.47	28,30	7.62	435,2	1200ppm	ا ح	
50	Jalore		=		64.0	. 1		1		•	ı	t
51.		Sanchore	=	ı	100.0	1	13,00	ı	612	•	1	ı
52.	Surawa	2	. =		100.0	ı	5.80	ı	720	1005ppm	ı	
53.		r	. =	1	0.09.	1	13.0	•	ı		ı	1
54.	Goindla	Ahcre	=		79,50		3,50	ı	208	ı	ı	ı
52	Bedana	=	=	1	70,00	•	00*9	ı	432	1	1	ı
56.		ŧ	=	1	70,00	ı	22,50	1	288	ľ	:	1
57.	Thoor	Bhinmal	*	1	80,00	1	11,00	3.00	208	ł	:	
58		Ahc re	=		54,00	ı	00.9	4.00	208		ŧ	1
59		Bhinmal	=	1	75,00	ľ	8.00	00.9	176	•	ı	ı
6 0	Devra	Sarchore	1969		00.00	ı	11,00	00.9	288	ſ	1	i
61.	Kuda	=	=	t	199,64	ı	27,10	16.79	827	•	ŧ	1
62.	Guda Ingerpura	pura Ahore	*		53,00		4.00	10,00	2,08	ŧ		
			-									

NOTE: Details of cnly one bore hole (expl./obs./piez./etc.) are given for report purposes.

		LTTAILS OF	Ω.	ORE HOLES D IN JALORE D	DRILLED BY E.T.O. UNDER U.N.D.P. DISTRICT (PERIOD 1964-65)	.O. UNDER 5 1964-65)	U.N.D.P.			
NO.	Name of site.	Panchayat Samiti	Dr ing met	Depth of base- ment in	Granular zone tapped in metres.	Tested discha- rge in M/day	S.W.L. in metres.		ICAL S	QUALITY Cl. (PPM)
; ,	1. 2.	3.	4.	5	6.		•			
!	1.	Abore	56.60	54.2		288	4.29	• !	7440	3030
• ~	Panchwa) } }	58.22		20.19-43.05	18 0	5,35	11.94	520	160
1 m	Garah	=	85,00		27.8 -32.6	380.8	9.40	9,39	270	3
					37.7-41.7					
<	Abore	2	57.91	50,90	18.26-24.38	579.2	8,10	5,93	385	20
* *	PIOTO		•		27.43-47.55	1	1			
, 1 0	un	=	82,30	96*09	10,36-21,17	580.8	6.55	6,94	210	177
×					25.77-30.34					
					35,53-41,05 51,71-67,23					‡
v	1,0+3	Jalore	41,45	31,70		460.8	7.94	8,23	740	255
	Taskant) 	45.70	45,70		330	11,50	5.54	18484	\$15 0
•	ķi					**				
	Baori		,				:		5360	1910
ф	Mespura	=	71.02	44.19	23.29-63.29	ָ ֪֭֭֞֞֞֞֞֞֜֞	1	20	2000	1135
о			91.14	87.78	28.43-30.84 33.56-71.78	8*000	17*77	30.6		1
•	e u O d D	Ahores	50.90	30.78	1	i	•	į	•	į.
• • • • •			102.72	98.15	7.92-17-37	129.6	4.94	4.87	300	40
4 7)	•		25,60-28,35			•	•	(
12,	Nawa Khera	era "	85,95	×	6,3-48,57	496.0X.	5.13	10,83	36 0	0 4 0
, T		Jalore	47.54	0.9	1		1	1	1 6	1 <
) <		•	77.72	ı	11,75-14,80	359.5	6,21	6,33	340	†
* -			•		21.58-27.90					
Ļ	200	2	97 A4	97 - 84		518.4	4.8	4.0	445	20
ŭ	15. TIKOL	i) • •) 						

ກ ຸ ຕຸ	E	34 4 4 7 1 3 3 3 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1	E 4 4 E										7.20 8.00 8.00 7.80 7.00 6.33 6.29
	•	क सुराक्ष ह	क भौराक ह	ជ ក្នុះ មេ ក្		਼ ਜ	ਜ਼	ਜ਼- -	ਜ਼	⊣	4 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	10°92 112 10°92 112 123 14 15 15 15 15 15 15 15 15 15 15 15 15 15	4.33 3.34 4.33 10.92 10.92 10.92 10.92 10.92 10.92 10.92
51.48 43.59-48.15 1497.5 51.57-55.47 58.82-62.18 62.69-72.85 76.81-81.99 71.02 17.83-30.66 944 88.70 34.83-83.10 -	51.57-55.47 51.57-55.47 58.82-62.18 62.69-72.85 76.81-81.99 02 17.83-30.66 944 .70 34.83-83.10 -	51.57-55.47 51.57-55.47 58.82-62.18 62.69-72.85 76.81-81.99 02 17.83-30.66 944 70 34.83-83.10 - 68 - 2 9.10-24.34 31.04-41.10	51.57-55.47 51.57-55.47 58.82-62.18 62.69-72.85 76.81-81.99 02 17.83-30.66 944 .70 34.83-83.10 - 68 - 2 9.10-24.34 972 31.04-41.10 22 25.60-38.71 432 41.94-80.16 81.69-86.89	1.48 43.59-48.16 1497. 51.57-55.47 58.82-62.18 62.69-72.85 76.81-81.99 1.02 17.83-30.66 8.70 34.83-83.10 -2 9.10-24.34 972 31.04-41.10 -22 25.60-38.71 41.94-80.16 81.69-86.89 31 5.49-20.74 1530	1.48 43.59-48.16 1497. 51.57-55.47 58.82-62.18 62.69-72.85 76.81-81.99 1.02 17.83-30.66 8.70 34.83-83.102 9.10-24.34 972 31.04-41.10 .22 25.60-38.71 432 41.94-80.16 81.69-86.89 31 5.49-20.74 1530 64.63-112.58 64.63-112.58 64.30-70.40 85.87-98.27	1.48 43.59-48.16 1497. 51.57-55.47 58.82-62.18 62.69-72.85 76.81-81.99 1.02 17.83-30.66 8.70 34.83-83.10 -2 9.10-24.34 972 31.04-41.10 -22 25.60-38.71 432 41.94-80.16 81.69-86.89 31 5.49-20.74 1530 64.63-112.58 27.43-33.67 64.30-70.40 85.87-98.27 67.14-79.08	51.57-55.47 58.82-62.18 62.69-72.85 76.81-81.99 1.02 17.83-30.66 8.70 34.83-83.10 - 68 - 2 9.10-24.34 972 31.04-41.10 22 25.60-38.71 41.94-80.16 81.69-86.89 31 5.49-20.74 64.63-112.58 27.43-33.67 64.30-70.40 85.87-98.27 87 29.07-58.12 67.14-79.08 23.14-41.60 212.81	51.57-55.47 58.82-62.18 62.69-72.85 76.81-81.99 1.02 17.83-30.66 8.70 34.83-83.10 - 68 - 2 9.10-24.34 972 31.04-41.10 22 25.60-38.71 41.94-80.16 81.69-86.89 31 5.49-20.74 64.63-112.58 27.43-33.67 64.63-112.58 27.43-33.67 64.63-12.58 27.43-33.67 64.63-14-60 85.87-98.27 87 29.07-58.12 67.14-79.08 23.14-41.60 212.81 18.44-38.25 26.3	51.57-55.47 58.82-62.18 62.69-72.85 76.81-81.99 1.02 17.83-30.66 8.70 34.83-83.10 - 68 - 2 9.10-24.34 972 31.04-41.10 22 25.60-38.71 41.94-80.16 81.69-86.89 31 5.49-20.74 64.63-112.58 27.43-33.67 64.63-112.68 27.43-33.67 67.14-79.08 23.14-41.60 212.81 16.64-36.50 810 61.20-73.86	51.57-55.47 58.82-62.18 62.69-72.85 76.81-81.99 1.02 17.83-30.66 8.70 34.83-83.10 - 68 - 2 9.10-24.34 972 31.04-41.10 22 25.60-38.71 41.94-80.16 81.69-86.89 31 5.49-20.74 64.63-112.58 27.43-33.67 64.63-112.58 27.43-33.67 64.63-112.88 27.43-33.67 64.63-112.88 23.14-41.60 23.14-41.60 23.14-41.60 23.14-41.60 212.81 16.64-36.50 81.00-73.86 20.73-40.23 20.73-40.23	51.57-55.47 51.57-55.47 58.82-62.18 62.69-72.85 76.81-81.99 1.02 17.83-30.66 8.70 34.83-83.10 - .2 9.10-24.34 972 31.04-41.10 - 41.94-80.16 81.69-86.89 31.5.49-20.74 1530 64.30-70.40 85.87-98.27 87.29.07-58.12 626.4 67.14-79.08 23.14-41.60 212.81 16.64-38.25 2613 16.64-38.25 2613 16.64-38.25 2613	58.82-62.18 58.82-62.18 62.69-72.85 76.81-81.99 1.02 17.83-30.66 8.70 34.83-83.10	51.57-55.47 58.82-62.18 62.69-72.85 76.81-81.99 1.02 17.83-30.66 8.70 34.83-83.10 -2 9.10-24.34 972 31.04-41.10 22 25.60-38.71 41.94-80.16 81.69-86.89 31 5.49-20.74 1530 64.63-112.58 27.43-33.67 1090.85 87 29.07-58.12 87 29.07-58.12 87 29.07-58.12 87 29.07-58.12 87 29.07-58.12 87 29.07-58.12 87 29.07-58.12 88 23.14-41.60 212.81 16.64-36.50 61.20-73.86 20.73-40.23 20.73-40.23 20.73-89.61 95.40-99.68
58,82-62 62,69-72 76,81-81 94 71,02 17,83-30 83 88,70 34,83-83	58.82-62 62.69-72 76.81-81 94 71.02 17.83-30 83 88.70 34.83-83 68 74.68 -	58.82-62 62.69-72 62.69-72 76.81-81 83 88.70 34.83-83 68 74.68 - 58 44.2 9.10-24.3 31.04-41.	58.82-62 62.69-72 62.69-72 76.81-81 94 71.02 17.83-30 83 88.70 34.83-83 68 74.68 - 58 44.2 9.10-24.3 31.04-41. 50 91.22 25.60-38. 81.69-86.	58.82-62 62.69-72 62.69-72 94 71.02 17.83-30 83 88.70 34.83-83 68 74.68	71.02 17.83-30 88.70 34.83-83 74.68 - 44.2 9.10-24.3 31.04-41. 91.22 25.60-38. 41.94-80. 81.69-86. 121.31 5.49-20.7 64.63-112. 85.87-98.	71.02 17.83-30 88.70 34.83-83 74.68 - 44.2 91.22 25.60-38 91.22 25.60-38 41.94-80 81.69-86 121.31 5.49-20.7 64.30-70 85.87-98 8195.87 29.07-58	71.02 17.83-80 88.70 34.83-83 74.68 - 44.2 91.22 25.60-38 41.94-80 81.69-86 121.31 5.49-20.7 64.63-112 9 - 27.43-33 64.63-10 81.69-86 81.69-86 81.69-86 81.69-86 81.69-86 81.69-86 81.69-86 81.69-86 81.69-86 81.69-86 81.69-86 81.69-86 81.69-86	71.02 17.83-30 88.70 34.83-83 74.68	71.02 17.83-30 88.70 34.83-83 74.68	71.02 17.83-30 88.70 34.83-83 74.68	71.02 17.83-30 88.70 34.83-83 74.68 - 10-24.3 44.2 9.10-24.3 31.04-41. 91.22 25.60-38. 41.94-80. 81.69-86. 121.31 5.49-20.7 64.30-70.7	71.02 17.83-30 88.70 34.83-83 74.68	71.02 17.83-80.66 88.70 34.83-83.10 74.68 - 31.04-41.10 91.22 25.60-38.71 41.94-80.16 81.69-86.89 121.31 5.49-20.74 64.63-112.58 - 27.43-33.67 67.14-79.08 - 18.44-38.25 - 16.64-36.50 61.20-73.86 - 20.73-40.23 73.13-78.94 84.73-89.61 95.40-99.68
71.02 17.83-30	94 71.02 17.83-30 83 88.70 34.83-83 68 74.68	94 71,02 17,83-30 83 88,70 34,83-83 68 74,68 - 58 44,2 9,10-24,3 31,04-41,	94 71,02 17,83-30 88,70 34,83-83 68 74,68 - 58 44,2 9,10-24,3 31,04-41, 50 91,22 25,60-38, 41,94-80, 81,69-86,	71.02 17.83-30 88.70 34.83-83 74.68 - 44.2 9.10-24.3 31.04-41. 91.22 25.60-38. 41.94-80. 81.69-86. 121.31 5.49-20.7	71.02 17.83-30 88.70 34.83-83 74.68 - 44.2 31.04-41. 91.22 25.60-38. 41.94-80. 81.69-86. 121.31 5.49-20.7 64.63-112. 85.87-98.	71.02 17.83-30 88.70 34.83-83 74.68	71.02 17.83-30 88.70 34.83-83 74.68 44.2 9.10-24.3 91.22 25.60-38 41.94-80 81.69-86 121.31 5.49-20.7 64.63-112 9 - 27.43-33.64.30-70.8 85.87-98.3 195.87 29.07-58.7	71.02 17.83-30 88.70 34.83-83 74.68 44.2 9.10-24.3 91.22 25.60-38. 41.94-80.8 121.31 5.49-20.7 64.63-112 9 - 27.43-33. 64.30-70.8 85.87-98. 8195.87 29.07-58.	71.02 17.83-30 88.70 34.83-83 74.68 44.2 9.10-24.3 91.22 25.60-38 41.94-80 81.69-86 121.31 5.49-20.7 64.63-112 9 - 27.43-33.64-38 195.87 29.07-58 7 - 23.14-41.7 1 - 16.64-36.7	71.02 17.83-30 88.70 34.83-83 74.68 44.2 9.10-24.3 91.22 25.60-38 41.94-80 81.69-86 121.31 5.49-20.7 64.63-112 9 - 27.43-33.9 64.30-70.8 85.87-98.7 7 - 23.14-41.7 1 - 18.44-38.7 7 - 20.73-40.7	71.02 17.83-30 88.70 34.83-83 74.68 - 10-24.3 31.04-41. 91.22 25.60-38. 41.94-80. 81.69-86. 121.31 5.49-20.7 64.30-70. 64.30-70. 85.87-98. 7 - 23.14-41. 195.87 29.07-58. 64.30-70. 85.87-98. 64.30-70. 64.30-70. 64.30-70. 64.30-70. 64.30-70. 64.30-70. 7 - 23.14-41. 18.44-38. 195.87 29.07-58. 64.30-70.	71.02 17.83-30 88.70 34.83-83 74.68 9.10-24.3 91.22 25.60-38 41.94-80 81.69-86 121.31 5.49-20.7 64.63-112 27.43-33 64.63-112 27.43-33 64.30-70 85.87-98 67.14-79 - 18.44-38 - 16.64-36 61.20-73 - 16.64-36 61.20-73 - 20.73-40 84.73-89	71.02 17.83-30.66 88.70 34.83-83.06 88.70 34.83-83.10 74.68 31.04-41.10 91.22 25.60-38.71 41.94-80.16 84.63-112.58 - 27.43-33.67 64.83-112.58 - 27.43-33.67 64.30-70.40 85.87-98.27 195.87 29.07-58.12 - 18.44-38.25 - 16.64-36.50 61.20-73.86 - 20.73-40.23 42.98-54.25 73.13-78.94 84.73-89.61
83 88.70 34.83-83	83 88.70 34.83-83.10 - 68 74.68 - 58 44.2 9.10-24.34 97	83 88.70 34.83-83.10 - 68 74.68 58 44.2 9.10-24.34 97 31.04-41.10 50 91.22 25.60-38.71 43	83 88.70 34.83-83.10 - 68 74.68 - 58 44.2 9.10-24.34 97 31.04-41.10 50 91.22 25.60-38.71 43 41.94-80.16 81.69-86.89	88.70 34.83-83.10 - 74.68 - 44.2 9.10-24.34 972 31.04-41.10 91.22 25.60-38.71 432 41.94-80.16 81.69-86.89 121.31 5.49-20.74 153 64.63-112.58	88.70 34.83-83.10 74.68	88.70 34.83-83.10 74.68	88.70 34.83-83.10 74.68	88.70 34.83-83.10 74.68	88.70 34.83-83.10 74.68	88.70 34.83-83.10 74.68	88.70 34.83-83.10 74.68	88.70 34.83-83.10 74.68	88.70 34.83-83.10 74.68
	58 44.2 9.10=24.34 97	58 44.2 9.10-24.34 97 31.04-41.10 50 91.22 25.60-38.71 43	58 44.2 9.10-24.34 97 31.04-41.10 50 91.22 25.60-38.71 43 81.69-86.89	74.68 44.2 9.10-24.34 972 31.04-41.10 91.22 25.60-38.71 432 41.94-80.16 81.69-86.89 121.31 5.49-20.74 153 64.63-112.58	44.2 9.10-24.34 31.04-41.10 91.22 25.60-38.71 41.94-80.16 81.69-86.89 121.31 5.49-20.74 64.63-112.58 9 - 27.43-33.67 85.87-98.27	44.2 9.10-24.34 31.04-41.10 91.22 25.60-38.71 41.94-80.16 81.69-86.89 121.31 5.49-20.74 64.63-112.58 9 27.43-33.67 64.30-70.40 85.87-98.27 67.14-79.08	74.68	44.2 9.10-24.34 31.04-41.10 91.22 25.60-38.71 41.94-80.16 81.69-86.89 121.31 5.49-20.74 64.63-112.58 9 - 27.43-33.67 64.30-70.40 85.87 29.07-58.12 67.14-79.08 7 - 23.14-41.60	44.2 9.10-24.34 31.04-41.10 91.22 25.60-38.71 41.94-80.16 81.69-86.89 121.31 5.49-20.74 64.63-112.58 9 - 27.43-33.67 64.30-70.40 85.87-98.27 67.14-79.08 7 - 18.44-38.25 1 - 16.64-36.50 61.20-73.86	44.2 9.10-24.34 31.04-41.10 91.22 25.60-38.71 41.94-80.16 81.69-86.89 121.31 5.49-20.74 64.63-112.58 9 27.43-33.67 64.30-70.40 85.87-98.27 67.14-79.08 7 18.44-38.25 1 - 16.64-36.50 61.20-73.86 61.20-73.86	44.2 9.10-24.34 31.04-41.10 91.22 25.60-38.71 41.94-80.16 81.69-86.89 121.31 5.49-20.74 64.63-112.58 9 - 27.43-33.67 64.30-70.40 85.87-98.27 7 - 23.14-41.60 18.44-38.25 1 - 16.64-36.50 61.20-73.86 73.13-78.94	44.2 9.10-24.34 31.04-41.10 91.22 25.60-38.71 41.94-80.16 81.69-86.89 121.31 5.49-20.74 64.63-112.58 27.43-33.67 64.30-70.40 85.87-98.27 67.14-79.08 - 18.44-38.25 - 16.64-36.50 61.20-73.86 - 16.64-36.50 61.20-73.86 - 20.73-40.23 42.98-54.25 73.13-78.94	44.2 9.10-24.34 31.04-41.10 91.22 25.60-38.71 41.94-80.16 81.69-86.89 121.31 5.49-20.74 64.63-112.58 27.43-33.67 64.30-70.40 85.87-98.27 195.87 29.07-58.12 67.14-41.60 - 18.44-38.25 - 16.64-36.50 61.20-73.86 20.73-40.23 42.98-54.25 73.13-78.94 84.73-89.61 95.40-99.68

	2	3	4	5	9	7	8	6	10	- - - -
31	Bagora	Saila	195.07		21.64-43.83 53.59-64.56	3336.4	2.61	3.98	1690	390
32.	Bhinmal	-	45,78	31.70	70,35-79,49 24,78-43,03	1	ı	ı	1	Į
33.	Bhagalbhim,		42,70	•65	•	1	1		i	ı,
34.	Jujani	=	216,10		62.36-70.26 108.74-114.83	784.0	23.99	6.62	4660	2090
			. * . *		122,00-140,92					
					180.11-184.61					
					196,06-206,71					
35.	Sewari	£	210,62	ı	ı	-1	. 1	•	ı	1
36.	Kura	Sanchore	199.64	1	69,80-80,16	184.0	26.78	16.79	1130	305
					95.40-108.20 126.449-139.04 159.16-178.36 185.62-191.34	eti.				
37.	Arnat	Bhinmal	222.49	ı	61.6-73.9	217.6	23.90	5.98	7674	3900
•					95.4-104.8	•) •		
v					122.6-134.8 127.9-140.9					
					152.9-159.2					
					177.1-180.6					
38	Dhumaria	2	199.00	ı	4,00-53,3	1		1	4996	2956
39.	Dangra	Saila	167,50	167.5		1935.5			•	•
40*	Batera	=	153,00	1	91.4-97.5	1	ı		5088	2150
					118,8-126,4				5848	2850
					136.5-143.8				1484	550
41.	Posana		182,5	ı	26.9	1987.2	ı		980	130
					45.01				614	80
					150				2234	960
42.	Thuran	=	182,8	1	52,4-54,8			1	5414	2960
					88,3-92,3				3824	2100
					111.2-112.7				2676	1100
					146.3-150.5				4516	2100
					153,3-160,6				1	ŧ

111.	45	195	710	1890	5570	8500
101	352	969	1690	3760	10628	14540
9 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ì					
## ##	ţ					
1 1 1 1	1935.3					
5 1 6 1	167.6 9.31	40.88	84.51	101.2	121.4	137.3
41	167.6					
2 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Dangra-II Saila	ı				
i						

APPENDIX-3

DETAILS OF TUBEWELLS CONSTRUCTED UNDER EXPLOITATION PROGRAMME (C.T.S. AND D.P.A.P.) BY GROUND WATER DEPARTMENT (PERIOD-YEAR-1974 - 1982)

5.	Village name.			To de in me	otal epth etres	Aq ta	uifer pped.	Disch- arge in cubic meter/ day.	Remarks
1.	2	٦ _		4.	•	⊃•		0.	7.
	,,_,		,.,.,.,.,.,.					,,	_,_,_,
A.	ALLUVIUM (St	icc	essful)						
1.	AHORE	Sh	ri Hazarilal		76	01	.der	648	
2.	BHADVI	"	Anaram S/O Gang	eo			.lu viu m		
2.			ii		123	X	11	1080	
3.		11	Ganesh S/o Lakh	_	125		11	1080	
		11	Roopa, Kana, Saji	a va	123	33	14	1080	
4.	DUACT T	H	Dungarsingh	1~	120	11		864	
5.	BHAGLI.	11	Shivnathsingh		130		14	864	
6.	BHINMAL	11	Anilkumar Bishn	oi		Y	ounger	864	
7.	CHARLI		711111111111111111111111111111111111111			a.	Lluvium	•	
0	CIMALL	91	Shaitansingh		51.	80	Older	72 0	
8.			01102 0011-21-91-				lluvium		
Λ		11	Asharam		57.	9	11	864	
9.m		91	Durgaram		41.	8	p	864	
10.		0.	Hanumanprasad		66 49		et	612	
11.			Devram		49		41	576	
12. 13.		99	Megraj		42		Ħ	720	
			Hanuwantsingh		52.	43	44	720	
14.	DESU		Okhsingh		60		8#	864	
12.	DHANWARA		Mohabatsingh				ounger	1152	
10.	DIMINAMA		1.011@20029			al	luvium		
17	GODAN	19	Alikhan		98		43	720	
10	GURA INDER				63.	,6	19	864	
10.	PURA								
19.	MANDHAR	15	Khemsingh S/o		70.	.1	at	1152	
			Jaharsingh		400		Older	612	
20.	KUDA	75	Asraf		120		lluviu		
					121.			" 5 76	
21.	•		Suja Mohammad			. 90	11	684	
22.		91	Ratnaram		122	05	Young		
23.	MADRI	81	Gehrilal Mathur		41	•00	alluvi	ım	
			and bedrach Cla		125		TITAT.	1152	
24.	NIMBAWAS	•1	Ajitsingh S/o		143				
			Motisingh		121	9	##	972	
25.	•	••	Sohan Singh S/o			• -			
26.	•	**	Tellsingh Ajit singh S/o Rawatsingh		125		t#	972	

```
Sh.Vela S/o Tikama 123 Younger
                                          alluvium
28. NOHRA
                "Hanwantsingh s/o
                                    121.68 Older
                                                       864
                                           alluvium
                  Khemsingh
                                     121.68 Younger
29.
                                                       648
                "Anoop Singh S/o
                                            alluvium
                  Dansingh
                                                       864
                "Balwantsingh S/o
                                     121.68
30.
                 Roopaji.
                                                       432
                "Nadsingh S/o
                                     121.63
31.
                 Chimansingh.
                                            Older
                                                       864
32. PHAGOTRA
                "Hukamsingh S/o
                                     121.9
                                            alluvium.
                 Sohansingh.
                " Panna, Sattar, Sajjan
33.
                                                      1152
                                     128.5
                                                       864
                " Peersingh S/o
34.
                                     130
                  Heersingh
35.
                                                      1152
                  ₽awa S/ɔ Jora
                                     133
                                     121.92
                                                      1152
36.
                " Pannesingh S/o
                  Sohansingh.
37.
                " Rakha S/O Kana
                                     127
                                                      1152
38. PUNASA
                " Vijay singh
                                     121.68 Older
                                            alluvium 1440
                " Danaram S/o
                                     122
                                                      648
39.
                  Dhularam
                                                      1440
40.
                  Heeralal S/o
                                     130
                  Punamchand
                                                      1440
                " Moolsingh S/o
                                     121.68
41.
                  Jogsingh
XZ.
                " Haringa S/o Jodha 123.44
                                                      1440
42.
                " Hukamsingh S/o
                                                      1584
43.
                                      123
                  Bhavsingh
44.
                " Naga, Tola S/o
                                      123
                                                      1440
                  Meghraj
                " Sona S/o Chaina
                                      99.14
                                                      1440
45.
                " Rajuram S/o Ganesh121.68 "
                                                      1440
 46.
                " Mala, Sona, Prema
                                      123.44
                                                      1728
47.
                  S/o Lumba
                " Khetram
48.
                                     121.3
                                                        864
     SEWARA
49.
                " Ukha S/o Dharma
                                     121.0
                                                        720
50.
     UMEDPURA
                "xChandanmal
                                      72
                                           Younger
                                           alluvium
                                                        720
                                                        432
                                           Older
51.
     VELDHARA
                " Navalsingh
                                            alluvium
<u>ALLUVIUM</u> (Failure)
                                                         57 Due to
                                      48.7
     BHADRAJUN
                  " Chhogaram
                                                            low di-
                                                     Meag- scharge.
                " Ratilal
                                      53
    CHARLI
                                                      re XXX -do-
                                                      288
                                      46
                                         Younger
    DAYALPURA
                 " Chunnilal
                                          alluvium.
```

-iii-

		-111	***			
1_	2	3	4	_5	<u>6</u> _	7
4.	DELWARA	Shri Hazarimal	42.26	Older alluvium.	144	Due to low discharge.
5.	DESU	" Shamboosingh	60	u GIIIAI ah .	144	# #
6 7.	JALERA KHU	MITTIGUET	38 50	17	dry Mea	tre #
8.	JHACK	" Daulatsingh	30	11	11	11.0
9.	KARWARA	"Mafatlal	52.8	H	18	80
10.	LETA	"Ramchhod Bharti	82	**	**	H
11.	MEDA	"Lakma Sarpanch	60	Younger alluvium.	dry	**
12.		"Maga/Lumba	68	11	360	**
13.		" Lama/Kana	52	H .	288	#1
	MODRAN		100	41		Dueto
_						salinity.
15.	NIMBODA	"Ajai S/o Vouka	123.44	Older alluvium.	288	Due to low discharge.
16.	NOHRA	"Jawansingh S/o	121.28		72	" " Tacilarde
		Dansingh.				
17.	PAL	"Modraram	60	***	Meag	
18.	<u> </u>	"Ajjaram	62.5	11	#1	10
	PANCHOTA	"Ramjitsingh	74	\$1	Ħ	++
20.		"Khetsingh	38	#1	11	11
	VALDARA	"Damodarlal	33	16	129.	
22.		Smt.Sahebkunwar	44	11 11	129	,6 "
23.		Shri Udaisingh	33	#	144	. "
24.		"Shamboo singh	42	61 61	180	
25.	•	Jawansingh	38 28	11	288 360	11
26. 27.		"Rawala & Party " Damodarlal	49	11	Dry	14
28.		"Sultansingh	44	88	II Y	e
29.		"Bheeksingh	30	65	н	11
В.	CRYSTALLIN	E (Successful)				
1.	GOLWARA	Shri Pratapa, Ragga		Granite	288	
2.	HARJI	"Lalchand	64	41	432	
3.	KAGMALA	"Hema/Jassa	26.2		432	
4.		"Vagta/Chela	25.2	98 84	432	
5.		"Lakha/Harji	32	41	432	
6.	•2112 \\	"Karima/Teju	44	H	432	
7.	KHANPUR	11011011202	45 38 . 7	H	216 180	
8.	MANDHAR	"Chogsingh	56	11	129	6
9. 10.	PACL-I	"Pratapram "Jeewaram	38.76		360	, -
11.		"Bhoopsingh	41.15	l	288	
12.		"Dharmadana	57	. H	288	
13.		"Akharam	50	41	144	

1_	2	3	4	_5	6	7
14.	RAMA	Shri Amitkanwar	60	Alluvium + Granite		
15.		" Moolsingh	50	11	475	
16.		" Chodharam	50	91	475	
CRY	STALLINE (F	ailure)		•		
1.	BHARUDI	Shri Choga/Bhura	25.5	Granite	Dry Duet	o low harge.
2.	GOLWARA	" Fagloo	43	it .	11 11	-
3.	KANDA DEVA	L" Nathusingh	47.25	11	7.2	16
4.	MANDHAR	"Nagsingh	56	#1	Meagre "	
5.	KHANPUR	"Bhimsingh	55	ŧ1	tt	H
6.	PUNAK KALL	A"Harjiram	37.5	Ħ	Dry	H .
7.		" Heeralal	30.5	59	7.2	#
8,	RAMA	" Prabhusingh	60	Alluvium	57.6	H
_	****			+ Granite		
9.	THOOR	"Jesaram	38	Granite	57.6	16
10.		" Badarsingh	57 .25	11	36	11

			APPENDIX-4		DETAILS OF TUBE WELLS (PERICO 1972-73 TO	TELLS DRILLING TO 1980-81)		FOR OTHER AGENCII
S.No.	S.No. Name of	Panchayat	Year of	Depth	Pipe ass		Draw	Discharge
	village.	Semiti	constr-	drilled		water	down in	in cubic
			uction.	in	metres.	level	metres.	metres/
				merres		in mtrs.		day.
1.	2.	3.	4.	5.	6.	7.	•	9.
(•	:		: :				
•	Meghlwa	Salla	1972-73	78.0	ŧ	18,29	4.57	350
2.	Jiwana	ŧ	=	75.0	•		ı	i
ه	Sirana	=	*	70.0	ŧ	16.76	4.57	310
4.	Ahore	Ahore	=	70,10	1	14.63	•	490
ູ້	Shankhawal1	= 71		70.0	,	•	7.62	315
•	Rama	3	=	80.0	1	C	9.14	350
7.	Bhuti		=	43.0	1	•	i))))
.	Bhagli-I	Jalore	=	. 08	1	ı	1	
•6	Bhagl1-II	E	E	100.0	1	33.53	15.24	210
10,	Bhagalsepta Bhir	ta Bhinmal	1973-74	75.0	61.0	G	4.87	530
11.	Harji	Ahore	. =	54	45			· 1
12.	Dadha1	Saila	1977-78	115	100	5.5	15	700
13.	Sankad	Sanchore	.`	09	1			
14.	Ahore	Ahore	=	65	62.5	8	8,5	420
15.	Sankad	Sanchore	*	99	ı	29.57	13.77	230
•	Tikhi	Saila	1978-79	76	70.0	•	•	
	Paharpur	=	=	80	0.69	7.40	7	560
	Sankad-I	Sanchore	=	105	101	28	m	280
19.	Sankad-II	=	=	100	86	28	ず	315
5 0•	Surawa	=	= 1	100	76	5.80	8	700

7	2	3	4	5	9	7	ထ	6
21.	Jakhal	Sanchore	1978-79	100	97	13	7	35
22.	Mokhupura		=	09	•	13 abandoned	loned	
33.	Akoli	Jalore	=	50	50.5	σ	ŧ	350
24.	Guda Balo-							
• 	tan		7	50	20.0	ຜູ້ນ	•	260
25.	Thanwala		=	45	39	အ ဥ	•	630
26.	M1thri-I		=	102	87	18		280
27	M1thri-II	Jalore	=	86	98	18		280
28	Bhaq11		#	96	96	23		350
29			1980-81	75	71	12,5	9	350
30.		Bhinmal	=	06	68,59	18	, 8	630
31.			=	48	40	13	ထ	350
32.	Dodiyali		=	12,75		8.20Abandoned	doned	
33	Silu-I	Sanchore	E	52	24	9		91
34.	Silu-II		=	30	27.5	ω		210
35.	Hariyal1	Sanchore	=	35	31	9,30	ന	630
36.	Akoli (Del-	Jalore	=	38	32	14,0	1	280
	dari)							

AFF-WDIX-5

[386] - 1685]

JALORE DISTRICT

당

WELLS

KEY

WATER LEVELS (IN METRES) AS OBSERVED IN

당

RECORD (

14.0714.7515.35 5.81 5.60 8.7514.00 9.1811.2013.40 9.2510.0612.34 12.2013.5514.20 12.2013.5514.20 12.2013.5514.20 6.62 7.9510.40 6.62 7.9510.40 6.62 7.9510.40 12.1110.2017.20 12.1110.2017.20 12.1110.2017.20 12.1110.2017.20 12.110.2017.20 12.110.2017.20 12.110.2017.20 12.110.2017.20 12.110.2017.20 12.110.2017.20 12.110.2017.20 12.110.2017.20 12.110.2017.20 12.110.2017.20 12.110.2017.20 12.110.2017.20 12.110.2017.20 12.110.2017.20 12.110.2017.20 12.110.2017.20 12.110.2017.20 12.110.2017.20 2.70 4.00 6.6011.80 1 3 E 2.47 10.9510.5512.70 3.00 3.35 7.70 5.95 6.2014.74 7.70 9.6511.40 3.64 3.88 4.73 7.16 7.1110.20 6.0014.2021.00 2 8.6510.9014.06 7.69 8.0010.70 7.69 8.0010.70 5.03 5.50 8.50 9.61 9.8313.66 5.46 5.63 8.55 8.09 8.0312.78 6.78 8.0412.02 7.80 4.02 6.33 7.93 3.85 5.05 7.90 6.9714.60 7.52 2.80 3.40 7.5814.70 7.70 &+wo+n0oonnuonond+nu-%w3088888800+8448688888 9.5° 4 METRES 1 2.91 7.70 7.20 7.70 5.00 4.60 6.67 11.2510.8013.09 6.80 — 8.4510.30 — 5.81 5.40 6.87 9.17 8.0011.14 4.60 3.10 4.76 3.70 2.65 3.26 5.17 4.05 8.60 9.00 7.40 9.10 8.45 8.25 9.65 6.90 5.55 8.40 8.80 8.00 9.80 4.92 4.90 4.56 5.90 5.50 8.50 9.0010.0015.70 2.91 2.50 5.50 DEPTH TO WATTER 2. 6.9 17.6015.7815.86 1 2.80 1.60 1.74 5.92 8.82 2.49 4.66 3.60 7.35 6.01 8.55 4.20 3.64 5.74 50 2,20 24.9 11.4510.32 7.04 5.47 8.20 6.39 6.50 2.60 3.50 6.70 1.61 ŧ 7.45 6.65 7.00 7.00 7.00 6.95 12.00 6.75 7.15 5.60 7.90 8.54 3.50 6.38 7.85 8.6 8.6 48776888 1828 Code HARNSWARA6 HAWARNI 7 HUTI 8 성 village. BLOCK: ~

大学 大			;	41.	46 17 18	19, 20, 21, 22,
1	4. 5. 6.	7. 8. 9.	10. 11. 14.	12. 14. 12.		
26. Sinkinklink 26.	6.98 E. 8. 6.95	6.95 5.87 2.70 9.71	74872.10 12.00 9.0013.40 13.41.7.1011.50 750 9.71 9.2011.1510.45.11.11 6.87 9.45	13.41.7.1011.50	10,6213,5019,27	15.3712.9516.95 16.95
26. DOKATE BI OCK.				•		00 0000 0000
28 UNICADA 2 2 28		10, 15 9,8010,85	10,5610,0010,30	10.6010.7611.35	11.2411.5772.14 17.4517.8518.85	24.9418.3519.75
ない。		15.8012.95	12.07.17.77.10.07	13.8517.0018.44	17,0017,2919,30	19.0519.1520.46
	٠.,	4.00 7.15 7.90	4.10 3.68 6.69	4.47 4.00 5.37	4.69 5.98 6.92	6.92 4.57 0.05
	1.5	34.7734.60 -	24.6034.5034.50 4.00 x 73 x 95	4.30 3.59 4.22	4.85 4.78 5.45	6.61 5.75 6.24
		10,107,37 9.15	9.63.8.7010.37 3.88.7.50.3.74	10.7711.2412.40 4.12.3.85 4.05	12.7613.0014.00 5.18 4.33 4.30	4.44 Dry. Dry. Dry.
という。	1	ı			,	7 7 7
	A. 94 7. 68	7.75 7.05 8.70	06.9 08.9 06.9	8.05 7.85 7.90	8,418,808,86	9,45 9,38 9,50 9,10 4, 10 40 40 40 40 40 40 40 40 40 40 40 40 40
			14,2013,9416,51	15.8215.7716.15	17, 2117, 7319, 37	11,0810,7812,77
38 TITLE 38	9.408.05	8.89 9.40 8.27		8.56 8.34 8.56	9.00 8.80 8.84	9,94 8,55 9,04
	8.78 8.95	0 40 4-2/ 0.5v	8.40 8.35 8.60	8,708,608,71	8,80 8,93 9,25	9,57 8,85 9,96
	8 17 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	18,4518,9020.10	19.3618,9519,90	19, 32 19, 2020, 65		Iry ury ury
公、福田等。通机公司	Mark 1.04 (.65 % -	6.25 4.65 4.60	6.25 6.15 6.50	7.15 6.21 7.40	3 9013 90 9 7	10,20 9,4010,70
17 JAMES BERNER 143	1.24 1.70	8.70 5.10	7 65 7 78 3,48	2,30 2,72 2,85	3.55 3.75 3.72	3-90 3.75 3.89
	2,99 2,09		3.20 2,40 3.03	2.90 2.67 3.37	3,90 3,93 4,02	74°47 4°47 4°47 7
A NEW PLANT	5.40	5,45 4,92, 5,20	5.55 4.25 4.45	5.27 5.27 5.42	4.85 4.80 7.03	4 20 4 20 4 34
THE WAY BUILDING	3.86 3.53		3,80 3,20 2,30	3.89 5.50 5.70 6010 6411 31	11, 7112, 5213, 62	14,14,14,9215.68
B) SMARKEN BY	11,6410,40	10,85,9,70 8,87	4.27 y 0.07 y 2.7 6 0510 6018 87	18, 6118, 3918, 76	18,61,18,5319,00	19, 1919, 0019, 42
64 PHY COUNTY 60	18.9518.91	19, 0018, 7018, 019, 61	18, 9518, 3318, 35	18,2217,6518,30	18,2218,3018,60	12, 12, 18, 7920, 00
	10.10.44	10,3510,0011.75	8.70 8.40 8.65	10.05 9.9010.27	10,6010,3210,47	10. 60. 0. 00. 0. 00. 00. 00. 00. 00. 00.
	8.35 7.80	8.20 7.90 9.6	7,90 7,85 8,29	8,20 7,90 8,40 0,46 9,46 0,46 9,46	8.05 8.28 8.35	8,438,398,67
53 SOBRUMS 53	8.538.55	8,40.7.99 8,3	1.45 (+.25 feed			•

		6 6	
22.	11.40 10.25 111.95 24.07	20,0019,7021,40 20,80 15,0016,8518,41 18,50 7 20,6021,7021,20 21,60 17,1018,7018,10 18,17 9,60 9,07 9,87 9,60 14,0015,2514,80 15,00 6,69 9,72 8,80 8,40 18,1518,1019,70 18,60 10,9010,1510,20 11,30 19,8725,4418,90 18,40 5,65 5,75 7,34 6,70 13,0511,3512,90 12,70 9,7510,30 6,82 7,35 10,45 7,33 9,20 10,30	7.95 15.95 15.45 1
		28.25.26.86.87.25.25.25.25.25.25.25.25.25.25.25.25.25.	23.828
21.	5011 9811 9223	25.44.80 25.14.87 25.14.87 25.14.87 25.14.80 25.12.90 25.12.90 25.12.90 25.12.90 25.12.90 25.12.90 25.12.90	14,8015,0116,18 9,40 8,5510,89 13,9013,3012,20 4,68 2,17 3,82 14,7014,4016,70 18,2310,9315,59
20.	5.50 0.90 0.70 0.23	27.15.6 27.15.	200 mg 20
5	, <u>, , , , , , , , , , , , , , , , , , </u>	20.0019.7021.40 20.0019.7021.40 20.0021.7021.20 17.1018.7018.10 9.60 9.07 9.87 14.0015.2514.86 6.69 9.72 8.80 18.1518.1019.70 10.9010.1510.20 19.8725.4418.90 5.65 5.75 7.34 13.0511.3512.90 9.7510.30 6.82 10.45 7.33 9.20	14.8015.0116.18 1 9.40 8.5510.89 13.9013.3012.20 1 4.68 2.17 3.82 14.7014.4016.70 1 18.2310.9315.59 1
æ •	W 004	6.94 7.90 9.19 8.17 8.5016.30 16.816.8020.35 20 4.12 3.30 4.25 5.25 3.94 4.40 12.7711.7913.25 13.5014.0015.22 12.7711.7913.25 13.5014.0015.22 12.7711.62011.6211.88 13.0813.6716.13 12.55 2.52 4.10 6.90 9.2011.20 12.5212.60 9.46 10.90 9.2011.20 10.90 8.1012.60 9.46 10.9011.9013.95 10.90 8.1012.16 10.7016.1113.30 10.90 8.1012.16 10.7016.1113.30 12.4511.0014.43 13.3013.1515.65 12.4511.0014.43 13.3013.1515.65 12.4511.0014.43 13.3013.1515.65 13.45	12,9013,5214,90 7,70 6,6618,35 10,1011,9011,80 2,90 2,27 3,75 11,0511,1014,65 14,1718,2913,48
17.	63 20 301 822	28 4 9 4 6 8 8 6 8 6 8 1 8 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8 5 8	12,9013,5214,90 7,70 6,6618,35 10,1011,9011,80 2,90 2,27 3,75 11,0511,1014,65
	50.7 10.8 10.9 0223	25.25.25.25.25.25.25.25.25.25.25.25.25.2	2013 70 6 1011 90 2 1718
16.	24. 24.		47.00.14
5,	36.86.45	264555000 	2000 0 0 4 200 2 2 2 2
4.	6040 908.80 3.96.6	668469866666666666666666666666666666666	80250
13.	7.50 6.40 8.42 12.20 9.8012.60 6.80 8.80 8.70 9.20 8.70 9.70	4847500000000000000000000000000000000000	13.0812.8012.90 4.10 3.00 6.60 9.84 8.35 8.50 3.12 2.40 2.71 9.40 7.50 8.00
		5 88 85052	5
12.	-7	50000	0 5258 11111
έ.	707. 5.8.6 5.8.6 5.8.6	7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	172.1 11.0 11.8 1 9.0
6.	7.10 4.45 3.7210.30 6.25 5.85 8.60 8.62 24.5024.452	5.80 5.70 4.35 3.40 11.2010.0011.50 15.8512.8013.60 4.95 4.55 8.95 9.6810.76 4.80 5.50 6.35 14.0014.3517.00 8.90 8.20 9.31 18.5018.6018.83 5.30 4.35 8.7010.90 5.40 4.80	4.84 - 6.3011.00 2.20 1.85 8.90 10.77 9.091
6	7.07 6.36 4,19	14.0013.20 9.31 8.7511.35 17.0015.9515.97 7.09 7.02 9.30 4.39 3.74 4.85 12.37 9.3013.50 18.2015.55 6.75 11.30 11.7510.0313.30	12,52.12,1012,52 3,77 2,48 3,39 2,30 1,80 7,20 2,85 13,05 3,85
Ŭ,	5024	9.31 8.7511.35 9.31 8.7511.35 17.0015.9515.97 7.09 7.02 9.30 4.39 3.74 4.85 12.37 9.3013.50 18.30 18.75 6.75 11.30 4.50 7.46 5.60 4.80 8.10	12.1012 2.48 3 1.80 2.85 3.85
ထ	5224	14.0013.20 9.31 8.751 17.0015.951 12.37 9.301 18.30 15.55 6.75 11.7510.031	2.377.2 2.30.1 7.20.2 13.05.3
7:	24.	7.001 17.001 17.001 12.37 18.30 18.30 11.751 11.751	なる。ころが
9	7.07 6.36 24.86 24.5224.5024,19	11.15.6.	1 1 1 1 1 1
5.	. 75	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	32.88
	7	# 24 # # # # 5	(4 ca
ر ا	40000	\$	777 777 80 80 18
	\$ 50 \$ 50 \$	KA 77	76 77 78 78 170RA79 80 81
2	B BEC OLI THWA! GRA KRA F KRA F	BOKRA BOKRA JALORE JALORE JALORE MAYLAWI MESHPUP MESHP	THE SECTION AND ADDRESS OF THE PERSON AND AD
*	ALORE 7. ARD 6. BACH 8. BHAC STAN	59. BILBAR 60. BOKRA 65. JALORE 65. JALORE 65. MAYLAN 66. MENAT 70. REMAT 77. BUGGO 77. STEWN 75. BUGGO 75. BUGGO	
×.	Salm nu nu nu nu	Wand on the contraction	contraction to

	İ																	
1. 2.	3.	, t	5.	6.	7.	80	6	9	11. 1	12	12 1/1	15	46 36		***************************************			a
	82	•	7.45		7 10	١,	7	6	2	1		•	7	14. J	19, 20,	21.	22.	
	83	•	7.25		20.00		28	26		ı	7.20 8.7	215.17	12,4211	844.15	14,6512	2715.13	15.30	
Ž	8 4	1		1	12.80	ì.	50.00	13,2021,10		, T	8,4013,4	7 4 2 5 2 5	3.00 8.22 3.37 8.15 9.6410.90 Dry. 18.4013.4415.00 16.5016.34	\$40.90 44.45.90	Pry.	1 0	• ;	
					,							2	.0.00	25.00	10,42010,	47.01.X	13.X	
ON PANDER!	50	1	2°8	ı	3,65 1,67	.63		3,48 2,59	2,59 3	3,15	3,22 3,32 3,55	2 3.55	3.85 4	10 4.00	4.834	97 17 175	00 7	
-	န္တ၊		,	1		8	7,05	6,85	5.05		7.10 5.2	0 8.50	99	5.00	10 PG 72	96		
	1837	1	2,40	•	5	S.	3,80	07.7		,	5,40 6.7	5 7.91	5.0	76 6.05		77 2 27	, c	
10 TH 10 O	œ	•	2,03	•	11.991			11,951;	2,50	,	4.2014.2	516.95	14 9215 9818 50 1	38.18.50	18, 3519, 3520, 25	3520 25	• • • • • • • • • • • • • • • • • • • •	
NASHAMPHURA BLOCK	BLOCK	ا مرا														7101/	0.00	
KANIWAKA BLOC.	<u>ن</u>																	
89. AJODAR	96	.75	3.69	1			ı	7 40.4	1.11 3	2	3 87 4 21	72 73	2 4 0 4	02 2 90	2 00 1.	7 00	1	
90.4LRI	S S	8	3,15				8	9.10 8	3, 1310	77	0,00	3.5	2	20.7.20	7.00 H	10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	25	
91 BENANNARA	Ξ	8	82	t	1.52 0	0.37	ı	0.82	7000	57	4.06.04		4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25	3 26 2	70°CL00	2 2 2 3	
92. Breath	SZ.	છ	3,78				5,38	6.25	5,30 6	٠ <u>۲</u> .	7.54 4.7	- 10 - 10 - 10	7 55 0	2000	7 67 0	200	25	
93 CHATWARA	2	1.2	太	1	8.25 6	6,83	ŧ	7.85	7.38.7) [2]	00 7	6 8	200	7,0	2000		7 8	
1,000 to 160	Ŧ.	388	88	ı		2	1	3.15 2	. to	ζΞ	6.17 6.10	29	, k	7.00 7.00 7.00 7.00 7.00 7.00 7.00 7.00	7,000	1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3,2	
95 THENOL	5	3.0115	88	;	1	15,25	;	3.85	0.77	ر ا	3.05-L. OC	77.	1, 88.4	17 1 27 S	35.00	200	77.0	
90. Man 4. 14. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19	ري	15,00,14	014.60	1	13,4212,3012,45	21/36	451	13,07:1	1,7012	3	3,5213,3	12°67	13,8514.0	015.00	15.5515.8715.50	745.50	200	
		. 104C	5.	i	,		† -	5,0035	3,394	75.4	7, p. 75. 37. 4	76.37	7. 5046.C	746.24	700	200	20.02	
SO PRESENTED	න හ		94.6	ı	8.18 9	9.63 6	6,95	8.35 6.46 8.05	5,468,	ව	8.22 8.4510.67	0.00	5,7710,8010,95	010.95	11.05 9.99 11.30	9 11.30	20.02	
90 GANG 00 13	30 43		9		Ç		•	0	3	į	0,000	,	•					
100 COLWARA 10) (S) (U)		3 15	1	3,95 1,95		. 41. F	7.07 x	2007	ું F	0.1012.4Z	2,2	15,2012,9	#15.05.	1322514	5,15,38	13.7	
401. H. RSHWARA	0126		26	1	77.		•	200, 200, 200, 200, 200, 200, 200, 200,	7000	 	いっていること	36	Z*/ X*/	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200	8.88	8.50 5.50	
102, JUNE 10, 10	22 44 25		.55	ı	15,3013			7,90,44	7014	38	7 2015 12	75 00	1 10101 41	740,070	1. 4200.03	(R* #70)	7/5-47	
103.Kindingl. 10	5		3,82	ı	5.60 2.46	, 46 4	\simeq	5.00 4.30 5.10	30 5	 2	17 6.10	6.96	0 6.17 6.10 6.96 7.78 7.78 7.79 0	25.0	10.0017.0210.47	20 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0	200	
104 ANDIA	· 末			1	1	•	1	8.65 7	85.8	55 1(63 9 25	11,65	11,4810,5	513 07	7 2242 4	74 25		
105. KOHKA 7.	5.25		525.15		25,0824,70	2.	8	4.7724	5824	だが	6024 39	24.51	24 5224 5	324.53	1, 1,000	224.63	60	
105. Junia 1637C	ا اعر		الك	1	6.55 4	.25 5	5.25	6.15 6	.05 6.	우	3.77 7.20	70,01	11,2013,2	014.20	15,2014, 6	014.89	69.41	
TO CONTROLLERA CO	₽; 2		510.15		1			8.6	, 7410	유	,77710,35	10.60	11,0510,5	110.60	11.4110.1	27.75	11.46	
108 TAT 108		, 5	. 17	•	16,5514,15		<u>.</u>	5.2715	.1815.	12 14	6015.74	15.95	16,1116,3	516.54	16.9716.8516.08		17.10	

1			
22.	20.73 6.87 9.05 9.75 9.75 9.75	50 4 50 50 50 50 50 50 50 50 50 50 50 50 50	45.92 124.92 124.92 14.16
21.	2.18 5.48 3.27 5.51 0.7 9.85	70 4 20 20 20 20 20 20 20 20 20 20 20 20 20	4.50 4.71 6.39 6.67 9.74 6.89 5.65 Dry. 20.0018.88 25.0225.01
20.	8847488	25.55.55.55.55.55.55.55.55.55.55.55.55.5	56 40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5	2.10 1.80 2.18 5.74 5.69 6.48 8.00 8.35 8.27 7.48 7.75 8.04 5.73 4.35 5.51 30.7830.8031.07	7.59 7.27 7.31 10.5310.5910.50 Dry. Dry. Dry. 3.25 3.09 3.08 2.67 5.01 4.95 5.05 4.98 3.97 5.75 11.9111.9612.11 2.64 2.74 3.02 14.4513.9814.14	5.01 4.50 4.71 6.40 6.39 6.67 9.89 9.74 6.89 5.00 5.65 Dry. 19.9120.0018.88 3.93 3.59 3.00 24.2825.0225.01 14.0514.0513.16
	838885	86 70 9 9 7 5 7 7 7	4.60 6.20 Dry. 4.90 20.00 1 23.23 24.85 2
17, 18	87 1 51 7 51 7 60 4 60 4 0512	22 27 27 27 27 27 27 27 27 27 27 27 27 2	4,25 4 5,84 6 5,84 6 4,68 4 20,1320 3,07 3
16, 1		7.35 7.22 7.58 10.1710.2710.30 3.11 3.07 2.97 25.5625.8625.84 4.95 4.73 4.95 11.5611.6311.85 14.0113.6714.21 12.3112.3012.51	14.45 4.25 4.60 5.66 5.84 6.20 9.40 9.50 Dry. 19.0720.1320.00 19.0720.1320.00 2.15 3.07 3.23 24.7624.8824.85
	5550555 -4554 5 5	2582568552555 25.854855255 25.85485545	4.7. 2.88 5.5. 5.6. 5.6. 5.6. 5.6. 5.6. 5.6. 5
15.	2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4644664677788 60447777788	30 4.53 1 5.41 30 9.38 54 4.70 9520.20 65 2.05 6813.80
14.	240000	6.65 7.04 7.29 10.5810.2610.06 3.73 3.74 3.82 2.80 2.62 2.75 24.7024.8925.10 4.75 4.69 4.78 4.68 4.03 5.45 11.15/11.33/11.55 12.52 -31	4.05 5.90 4.55 5.20 5.11 5.41 9.27 9.30 9.38 4.63 4.54 4.70 20.0519.9520.20 1.45 1.65 2.05 24.8024.7524.85 13.6213.6813.80
13.	1 w w w 4 % 6	00 w 0 4 4 4 4 4 4 4 4	20.05 4.63 6.27 7.20 7.20 7.20 7.20 7.20 7.20 7.20 7
12.	27.72 6.65 6.75 7.75 8.75 8.75 8.75 8.75 8.75 8.75 8	25.55 26.59 26.59 27.55 26.55	3.75 1.86 1.86 9.24 1.65 1.00 1.10
=======================================	25.05 20.05 20.05 20.05 20.05 20.05	64.65.44.25.55.45.45.55.55.45.55.55.45.55.55.45.55.5	2.75 3.68 2.60 9.08 8.95 4.65 4.53 1.60 0.91 13.2013.601
Ę	1.70 1.60 1.72 3.70 2.83 3.45 6.00 6.08 6.50 6.62 5.11 6.60 3.65 4.45 4.15 31.2030.7030.36 11.14 9.75 9.85	6.60 6.40 6.70 9.8010.0810.28 3.33 3.50 3.60 2.92 2.45 2.59 25.3024.6124.40 4.87 3.21 3.77 11.1511.0311.05 2.35 2.50 2.55 13.3413.0013.48 12.1011.5011.90	3.75 3.68 3.75 5.05 4.95 5.50 2.60 1.86 9.08 8.95 9.24 4.65 4.53 4.65 1.60 0.91 1.10 13.2013.6013.55
0	6.95	1,50	5.50
8	1020 000	6.50 6.951 2.65 22.7C 4.35 7.40	3.83 3.85 8.76 20.95 25.15 13.44
2	1.75 4.43 31.523 50.55	1111111111	1111 1111
۰		111111111	11111 1111
ی	4 4 4 5 6 9 7 8 8 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2.50 2.50 2.50	4.2.0.4. 12.0.24 6.2.0.9.9.9.9.9.9.
-	5.41 1.52 6.40 6.07 5.50 4.55 5.30 4.95 31.1531.73 9.48 8.30	7.70 7.65 10.5740.08 2.55 3.45 2.66 - 3.43 4.66 3.43 4.66	127 4.68 4.65 3128 5.37 5.30 3129 5.37 5.30 13010.5010.40 1131 4.55 4.39 132 22.0521.95 133 9.18 9.00 134 25.1525.95 135 14.9014.92
	95 11 15 4 15 8 11 12 12 12 12 12 12 12 12 12 12 12 12	7 27 8 5 6 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	122 132 132 133 135 135 135
	URA WARA NFURA I RA AR	SANCHORE BLOCK: 116, ACHALPURA116 118, ACLD WA 117 118, ACLD WA 117 119, ANKHOL 119 120, ARWA ILA 122 122, BAWARIA 123 124, BHAWARIA 123 124, BHAWARIA 125 125, BHAWARIA 125 125, BHAWARIA 125 125, BHAWARIA 125 125, BINJROL 125 126, BINJROL 125	
ľ	109.RAMEURA 110.RANIWAR 111.RATANFU 112.ROPSI 113.RORA 114.SEWARA 114.SEWARA	ACHA ACHA ANNCH ANNCH BEND BEND BINU	KA GOLIA 127, BIRAWA 128, CHITALWA 129, CHOTAKO 130, DEDUA 131, DHANITA 132, DHANITA 133, DUGAWA 134, DUNGRI 135, CARDALI
	109. RAMEURA 109 110. RANI WARA 110 111. RAIANEURA 111 142. ROPSI 112 113. RORA 114 114. SEMARA 114 115. VANDAR 115	M 4118682888888888888888888888888888888888	25 25 25 25 25 25 25 25 25 25 25 25 25 2

22.	15.59	2 2 2 2 3	ָ הַלַּ הַלְּ	, v	7.75	72 77	Ĩ.,	10.36	, K	\ }	25	16.86	10.44		2,55			12.75	5.24	25	24.11	9.95	7.19	Day	г, В		6.87		
21.	115.74	٧.	- 1	7-4	٢-			510.37	, v.	\ \ \ \ \	11,7911,3012,20	016.93	370,50		5 2.62		3 Dry.	012.79	5.09	124 . 36	524.12	511.75	1 6.14	Dry	5 6.40	5 2,45	92.9	Dry	7.90 7.24 7.46
20.	315.11	ひし	JM	\sim	I [~	\sim	֡֜֜֜֜֜֜֜֜֜֓֜֓֓֓֓֓֜֜֜֓֓֓֓֓֓֓֓֓֓֓֓֓֓֜֜֜֓֓֓֓	110	7		11.30	12	20		2.5		3.98	112.5	2	7.	24.1	10.1	6.4	D'L'A	9	2,0	٠ 9	Ä	7.21
19.	15.781	ب م	ָא נָ אַנְי	70	7.4	32.80) (ò	3,2	2	1,5	, e	70.7	1	2.74	•	4.10	12,89	5.24	24.34	2,3	10,25	7.0	Ä	6.13	2.69	6.75	D TJ	8
18.	15.73	٠, 8 ئ	9.5	1.67	7.33	2,25	<u> </u>	55	<u>'-</u>	2	2	20	9		2.72	,	4.45	යි	82	82	5	3	တ္က		6.18	20.	6.5 5		.8
17.	5.081		9	1.5	6	113	<u>}</u>	.021	6	5	104	52.	767		8		5	, 301.	R	192	342	. 251	.93		25	8	9		ደ
9	121	<u>~</u> c	75	9	, S	8532		.8110	78	20	11 7511 4011	6116	764		.16 5		. 18 3	11,9912,3012,	500	.3524	4724	.75 9	8		r,	~	6,00 5		7.45 7
	.23 15.	,,,,	1 1	117	, t-	7	•	9	in S	30.	65.77	72 16	9.	•	98 2		<u></u>	30 44	52 5	56 24	51 24	55 8	9	<u>`</u>	- 4 •	53	7	•	52
15	8115	20	יאו	1CV	O	2	:	O.	7	N	911	9	5				් ග	012.	5.4	724.	824.	8	3 6.1	2.1	7.40	2,	1.9 /	1	5 6.7
44					7 5.8			-	*				•		2 0.99		(1)	9.11.9	2.4.	7, 47(124.6	7.8	7 6.3	ŀ	4.1	, ,	5.9	i	8.6
13.	15.001	20.	-7	2.4	6,7	31.7	φ,	9	9	3,7	7,0	999	5	5. 5.	2,5	-	4 බ	5	√ <u>,</u>	24°8(24,81	8 7,	6.1	70.4	7	9.	ۍ بر	3.76	6.55 8.65 6.75
12.	715.43	J 4	. 🗸	CVI	w	₹	·N										4,18	30	\approx	黑	ぶ	2	8	ଞ	卐	7	8	2	光
11.	314.871	∵≍	. ※	κ	\sim	·	•	3, 12	5.	56	.501	847	2.	2,2	1.80	ł	ر ا ا	3	. 50	8.12	.182	25	2,3	.25	ું જુ	8	6.38 6.3	8	2
10.	16.431	5	9	.95	2.0%	5333	9	11.0	52	.80	,8210	,1016	800	.25	8	(3	.747	8	1724	,6225	الا	50.	:3		8	4 5.00	5	₹ 17 17 17
	74	2,10	05 ,	.,	25 2	3 2		O	8	(VI	95 10		æ		1 04.	,	M	£-	4	2	23	ω	w	~1	4	_	Φ,	i.	-
6	1 1	ı	2 2	•	100 100 100 100 100 100 100 100 100 10	1	1	Q	7	•	410.	1	၊ ထ	ı	2		ş	: .Q		ارة 1	ı w	ŧ	2	1	ŀ	1	5	!	ñ. 1
8	!!	•	તં	ı	۳,	1	F	ထ	ı	ŧ	5.	ŧ	5.0	•	1		ł	11,60	à	25,5	26.2	ī	9	1	1	1	5.93	1	6.7
6. 7	1 1	1	1	1	1	ŧ	ł	•		1	ŧ	ı	•	•	1		ı	ı	ı	1	•	1	1	ı	i	ı	1	i	1.
	ا ا وي		! 정	•	1 23	1		ı چ	ئ ا	1	ا پو	1	•	1	む 1		1	7.5	ا 0	: 2		ı	- -	1	•	1	ا ا	1	نة ۱
7.	16.9516.9	1	9 2,(ŧ	2.0	•	ł	.6010	.00 2.5	1	11,2610,7			ı	2 1.1		•	12,9412,67	55,000	421.1	.7327.6	ı	2 58	ŀ	1	1	25.00	•	10,4110,2
4	16.9	, ,	2.69	1	6.50 8.50	•	1	_	ς O	1.	11,2	•	. •	1	2.1		1	12.9	r. c.i	<u>ب</u>	27.7	1	6.12	1	₹.	.i	6.23	1	٦ ٠
2	4-1	公	•	-	141	142	141143	177	75	146	147	-	46	8			155	153	45.	155	156	157	1 28	159	₹ S	161	162	163	⊉
	GAON	138 JANWI	~~	AWAS	<€		,	g.	MAS.	HEA	147, NIMBAU	MEDA	DAR	S S	DAR T	HTTOM HA	V WIL	153 SANCHORE	TATO	9	2	.	Z	⊟	#				
2	36. HADETAR 37. HOTI GAO	JANN	JHAE		141.KERIA	KHAR	KHE	144 LALPUR	145 MELAWAS	NALL			Ti.		151 RANODAR	9		SANC	S	S. N.	SAR	THE	N. S.		3		162 TENTROL	MANK	VIHOL
-1			~					:27		i A	14		1	200		100	Ž,	-	- ₹			: 21	পুন		2.7		Art.	ir_i	ক্ত

14 2.	,,	7	성	اف	7	8	8	9	7	12.	13.	77	15.	16	17.	8	19.	20.	21.	22.
SAILA BLOCK:						•														
1.65. BAKRA 165	165	8.58	3.05	ŧ	8.70	9. 0	8.70 8.04 8.92	8.70 8.35 9.11	8,35	9.11	9,05	8. 9.	9,46	9,48	9,30 5	3,81	9,941	0.051	. 02.0	0.70
166.BISALA	8	1	9.9	ı	10.05	8	9 8	9.95	10.55	9.79	8	9,401	10.01	9.85	9,9210	1.15 1	10,351	0.50	.75	9
167. BAUTRA	167	29,953	5,05	1	1	8.35	30,20	30.50	30.50	30.52	8	30.343	8	30,903	10.26X	3.26 3	572.00	5.63	8.0	5.73
168 BISANGARH	8	8.0	5.3	ı	11.10	9,85	11.00	11.15	11,00	12.53	11.96	11.101	2.48	12,251	2,561	5.70 1	13,801	1.501	80.1	14.70
169, CHARAU	\$	8	24.7	,	•	7.63	8.35	8.50	8.30	8	8,55	8.35	8,6	9,02	9.18 5	3.25	89	9,701	1,16 1	0.80
170 DADHAL 1	130	5.32	.83	ŧ	5.20	45.4	4.70	4.76	%	4.92	5.01	4.75	5.38	5.25	5.40	5.92	6.75	5.72	8.0	Dry.
17/1:14 IA 1		27,602	5.5	1	27.75	27.48	27,50	27.70	7,41%	27.53	27.48	27,352	7.76	27,602	7.782.	7.80 2	27,8127,8528,15	7,8528	3.15 2	27.04
172, DETA 1	2		ı	1	•	ı,		7,80	%	8 8	8.10	0,40	7.92	8.25	8.43 5	3.17	9,41	9.43	3.95 1	80.00
13.69	13	5.33	4.55	i	4.85	4.15	5,35	5.90	5.85	7.05	6,25	5,43	5.73	9,46	. 06.9	7.57	8.26	8.15	8.	8.70
174.GOLIYA 1	174	8,0	9.90		8,8	9.52	10.14	10.30	10, 15	10.41	10.34	10,051	. 642	10,471	6.81	1.33	11,271	0.951	8	8.8
175 HARMU	33	8.	6.92	ı	7.05	6.58 58	7.05 6.58 7.15	9	6.93	7.19	7.18	7,45	7.45	7.37	7.53 €	3.05	8.11	8.25	3.05	8.71
176.KHED LAVA1	176	10.36	9.92	ı	•	ı	•	10.13	.00.01	10,25	9.85	9,551	0.95	10.791	0.8510	1,45 1	11.371	1.171	8.1	2
177.KESWANA 1	1	7.53	1	1	7.55	9,2	7.54	8.10	8	8.37	8.20	7.76	8	8.56	9,1016	2.80	11,001	0.251	8.	12,20
178 KUABER 1	<u>8</u> 2	19.15	i	1	ı	1	3	25.6%	25.10	25.20	25,60	26.052	6.10	25,602	6.002	5.50 2	6.102	7.052	7.35 2	9.9
-179 MEGALWA 1	139	9,29	3.85	1	9,45	9,25	;	9.95	8.75	10,15	0, 2°	9,661	0.27	10,201	0.0710	8.	10.611055 10.	055 10	.051	٠ 8
180 MOKNI 1	8	26,2025.	3,9	ı	27,102	56,25	16,24	27.15	306.93	56,64	26.7026.3327.70	26,332	7.70 ;	26,902	26.9026.6026.64	5.64.2	6.812	7,1028	R	6,90
KHEDA									•				,	,	;	1	•			
184 OTHWARA	<u>8</u>	2,5	3,89	ı	4.8	6.17. 4	ŧ	5,4	4,65	5,05	7, 57	4,55	5,20	9	8	5,76	80	08.9	, 96,	7,20
182. PAHARPURA	182	9.0	9,27	1	11.07	9 ?	12,80	1. 59	: S	13,22	12,35	5.00	සු	00.7	8,2016	8	8	8,4020	S. S.	20.80
183, PANTHERT 1	183	1	9.7	Ŀ	11.95	11.75	11,55	12,15	1,5	12,15	12, 15	11,851	202	12,231	2.2512	8, 8,	2.047	2,701	5.10 1	3.15
484 RATUNA 1	184	5,38	5.25	ı	5.75	5,20	5.63	5.95	5,65	6. 02	6,04	5,43	3,52	6,05	6,16,5	8	ر. ال	08.9	,	,
185,54NTHARA 1	<u>8</u>	5.28	3,48	i	6,25	4.13	6.50	%	્ ઉ	6,52	7.42	3.87	8	0 10 9	න ප්	3.07 1	0,221	1,951		2.90
186.SALLA.	98	6,65	00.9	1	ι	6.12	- 6.12 7.15	7.25 6.85 7.39	6.85	7.39	7.57	7.57 6.70 7	8	7.72	7,72 8,02 8,70	2,5	8,95 8,80 8,80	8,80	8	ه ک
187.SATUA	187	•	ŧ	1	ı	ı	ı	ı	3	6	9	5,52	2	9	3 8.2 	යි. ග	ŗ	Lry	Į.	2
188.SIRKNA	188	15.151	స్త	1	14.95	3514,681	8	14.70	14.6314	14.75	4.2	14,781	8	15,001	ر ا ا	64.0	5,521	5,211	54.0	<u>ئ</u> ئۇر
189 TILEORA	189	<i>હ</i> ે છ	0,40			4,22	5		5,40	5.76	4.87	5,38	1	5. 20	5.10 t	2	566.4	3	3	3.
KENERES																				

A DEWNITK A

RECORD OF WATER LEVEL IN METRES (B.G.L.) AS OBSERVED IN KEY WELLS/PIEZONETERS HONITORED MONTHLY. (PERIOD 1980 TO 1983)

S. Name of	Code		1	000	7					1981	PARTY CHRONIC CHRONIC	rup - com um A			185	2		:	,	1083
No.village/	/ No.	Mar.	June.	July .	Aug.'S	ept.Oc	t Nov	l g	λ.Mar.	Mar. June. July Aug. Sept. Oct. Nov. Jan. Mar. June Oct. Mar. June July Aug. Sept. Oct. Nov. Dec.	Oct.	Mar.	June	July	Aug.	Sept.	Oct. N	w De		Jan.
f. 2,	χ,	4.	5.	٠,	7.	3,	10	. 11.	12.	5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22.	14.	15.	16.	17.	∞.	19.	20. 2	21. 2	ب.	23.
AHORE BLOCK:	Ä						·													
1. BHADRAJUN KITHANI	2	•	•	• ,	,		•	,				•					-	`		
	5,50	5 5.25 7.10	6,26	6,36	<u>ئ</u>	28	6.87	3.20	2.7	19.20	6.33 1	1.80	14,80	16,3	013.6	7 5.8	016,80	16.5	015.2	514.70
2. HAINS 610.7210.95 WARA	610.7	210.95	1	•	1	10.55	i	1	12.70	14.071	4.75 1	5,35	15.75	16.0	016.9	016.7	516.25	17.0	017.3	3 10.55 12.70 14.0714.75 15.35 15.75 16.0016.9016.7516.25 17.0017.3517.35
3.BLJALI 10 2,44 3.64	70 2,4	43.64	3.38	3.27	3.56	3,88	4,24	1.59	4.73	5.10	5.32	8,60	7.15	ŧ	•	3	1		1	
4. DAYAL- PURA (MADRI)	13, 7, 19, 8, 69			9.01	17.00	10,901	1.731	2.90 1	. 90° 4	9.0111.0010.9011.7312.90 14.06 15.06	ı	F	i	•	•	ı	1	ı	ı	•
5.0AIT.	1816.45 8.09	5 8,09		1	t	8,0,3	1	1	2,73	12.73 10,9316.00 15,20 13.40 13,0512,4612,1012,00 14,4020,0019,25	5.00 1	5,20	13,40	13.0	512,41	612.10	012,00	14.4	020,00	19.25
	24 4.68 5.62 27 9.4510.40	3 5.62 570.40	1 1	1 1	1 i	1 11.47 :	t :	1 1	6.40	6.40 10.40 7.50 9.50 9.50 9.90 8.82 8.90 9.20 9.5511.4010.90 13.45 15.3712.95 15.95 15.55 17.4519.4517.7016.65 17.3517.9518.65	35.	9,50 5,95	9.53 75.93	9.4°	0 9,0 1,0 1,0	2 8.9K	9,20 016,65	5.65	511.4(517.9!	310.90 518.65
BHINMAL BLOCK; 8-BHINE 37 5-37 4.69 4.58 4.12 4.43 5.98 6.30	OCK:	69. 7	15. 4	4.12	4,43	5.98	6.30		95.65	05.5 05.4 85.4 00.4 48.5 40.5 6.09 3.8.7 58.7 57.4 5.9 5.9	57 7.8%	7.5	9	e. e	70.5	3,84	4.00	58	4.30	5.50
MAL	7 0 7	724 676			, ,		, K				· ,	<u>.</u>	• [}		2	}	}	
10.KUSLA- 42 7.20 7.50 7.80 7.75 7.85 8.50 8.20 -	74 74 74 74 74 74 74 74 74 74 74 74 74 7	0.12.4 (0.00)	7.88	7.75	7.85	8,50	8.23 20.53		5010	8,5010,59 8,8012,85 12,85 13,24 12,89 12,4212,6912,5012,70 13,00	, 3012.8!	5 12.4	85 13	24 15	2,89	12,42	12.691	2,501	2.70	13.00
11, PHIGG- 4918, 7618, 6118, 5818, 5218, 5818, 53 18, 57 -	4978.71	518.61	₹ 18.	18.52	18.58·	18,53	18.57		,0019,	19,0019,1919,0019,41 19,41	xo19•4·	1 19.	7		ţ	1			. 1	ı
12.SEWARE 52 8.20 8.25	52 8,2(8.25	3,29	8,27	8.31	8.65	3.29 8.27 8.31 8.65 7.46 -		878,	8.87 8.94 9.08 9.81 9.63 9.62 9.50.9.51 9.60 9.64 9.50 9.50	8 9.8	40,	63 9	8	9.50.9	3,51	9. 8	9.6	9,50	9.50

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. JALORE BLOCK: 13. BEAGLI 58 24.0024.0223.86 23.7523.8523.82 23.8723. SINCH. WAN. 14. JALORE 64 11.8813.0813.74 13.9013.0613.67 14.5514.8 JASWANTEUR BLOCK: 15. Par. 85 3.55 3.85 3.72 3.69 3.72 4.10 4.02 - SERI RANITWARA BLOCK: 16. AJOURR 89 3.58 3.80 3.75 3.89 4.14 3.86 3.67 - 17. BEAMAN. 91 1.10 1.27 1.18 1.09 1.70 1.90 3.10 - 18. CHAL. 93 8.90 9.19 8.65 8.62 8.47 8.59 8.30 - 19. RANIT 110 4.73 4.80 4.70 4.57 4.43 4.70 4.85 - 20. SERINA 117 10.0610.1710.2110.2410.24.02.7 10.27 - 20. SERINA 127 54.53 4.45 4.61 4.50 4.67 4.25 4.56 - 22. BERNA 127 54.53 4.45 4.61 4.50 4.67 4.25 4.56 - 22. BERNA 127 54.53 4.45 4.61 4.30 4.67 4.25 4.56 - 23. DUNGH 134 24.8524.76 - 24.88 - 24.88 - 24.88 26.54.074 155 12.2012.30 12.44 - 26.55.84.074 155 12.2012.30 12.44 - 26.55.84.074 155 12.2012.30 12.44 - 26.55.84.074 155 12.424.3824.3824.3824.34 24.31 - 26.55.84.074 1.55 12.424.3824.3824.3824.34 24.31 - 26.55.84.074 1.55 12.424.3824.3824.3824.34 24.31 - 26.55.84.074 1.55 12.424.3824.3824.34 24.31 - 26.55.84.074 1.55 12.424.3824.3824.34 24.31 - 26.55.84.074 1.55 12.424.3824.3824.34 24.31 - 26.55.84.074 1.55 12.424.3824.3824.34 24.31 - 26.55.84.074 1.55 12.424.3824.3824.34 24.31 - 26.55.84.074 1.55 12.424.3824.3824.34 24.31 - 26.55.84.074 1.55 12.424.3824.3824.34 24.31 - 26.55.84.074 1.55 12.424.224.3824.3824.34 24.31 - 26.55.84.074 1.55 12.424.24.3824.3824.34 24.31 - 26.55.84.074 1.55 13.60	2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23		13. BINDH. 58 24.0024.0223.86 23.7523.8523.82 23.8723.7923.82 23.8023.9223.80 24.0723.9523.65 23.70 23.302.8023.8023.80	MAN. 14.JALORE 64 11.8813.0813.74 13.9013.0613.67 14.5514.6416.13 17.1018.7018.10 18.1718.2018.95 18.20 18.2018.8518.5018.50	3.72 3.69 3.72 4.10 4.02 - 4.00 4.83 4.54 4.80 4.80 4.85 4.44 4.45 4.47 4.64 4.77 4.85		3.75 3.89 4.14 3.86 3.67 - 3.38 3.82 4.28 3.70 3.70	8,63 8,62 8,47 8,59 8,30 - 9,31 10,28 8,99 9,98 9,98	4.70 4.57 4.43 4.70 4.85 - 5.40 5.74 5.69 6.87 6.87 6.38 3.18 4.90 7.10 6.15 6.10 7.44		0.2110,2410,2410,27 10,27 - 10,30 10,5310,5910,65 10,6510,6410,61 10,62 10,5110,6010,8010,60 1.5511,4811,5811.65 11,61 - 11,85 11,9111,9612,21 12,21	4.61 4.30 4.67 4.25 4.56 - 4.60 5.01 4.50 4.91 4.91 4.92 4.72 4.57 4.78 4.83 4.82 4.82 - 24.88 - 24.88 - 24.855 24.825.024.92 24.9224.88 24.02 25.0125.0525.0625.04		4,4224,3824,3624,34 24,31 - 24,29 24,3024,1524,11 24,11
1.1.54 W W THE WINDS WE WE WERE TRANSPORTED TO	4. 5. 6. 7. 8. 9.	JALORE BLOCK:	% 24,0024,0223,86 23,7523,853	4 11.8813.0813.74 13.9013.06	JASWANTEURA BLOCK: 15.Pan 85 3.55 3.85 3.72 3.69 3.72 SERI	RANIWARA BLOCK:	19 3,58 3,80 3,75 3,89 4,14 11 11,10 1,27 1,18 1,09 1,70	93 8,90 9,19 8,63 8,62 8,47	110 4.73 4.80 4.70 4.57 4.43	SANCHORE BLOCK :	17 10.0610.1710.2110.2410.24 23 11.5511.5611.5511.4811.581	27 54.53 4.45 4.61 4.30 4.67 34.24.8524.76 2	53 12,0011,9912,1612,1612,201	156 24,6124,4724,4224,3824,3624,34 24,31

ا ج	3.50 3.50 3.18 5.10	8.65	1 1
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23.	SAILA BLOCK: 28. BAKRA 165 9.46 9.48 9.05 9.07 9.21 9.30 9.55 9.75 9.31 9.9410.0510.70 10.7010.8710.5410.4510.7010.9011.0011.10 29. BAUTRA 165 9.46 9.48 9.05 9.07 9.21 9.30 9.55 9.75 9.31 9.9410.0510.70 10.7010.8710.5410.4510.7010.9011.0011.10 29. BAUTRA 167 30.6830.9030.39 30.6530.2430.26 30.3230.4030.29 30.3725.6030.90 30.7530.7430.8030.8030.8030.8030.9030.90 30. DAHIWA 171 27.7627.6027.55 27.5427.5527.78 27.70 - 27.80 27.8127.8527.04 27.0427.1028.1028.1528.6828.4228.4028.50 30. DAHIWA 171 27.7627.6027.55 27.5427.5527.78 27.70 - 27.80 27.8127.8527.04 27.0427.1028.1028.1528.6828.4228.4028.50 31. HARMA 175 7.45 5.20 7.38 7.48 5.10 7.64 - 8.05 8.11 8.25 8.71 8.71 8.72 8.67 8.73 8.87 8.89 8.85 9.18 32. KHARAL 4.87 7.00 8.42 - 7.55 - 26.50 26.1027.0527.35 26.9025.8025.40 - 26.1026.1026.2026.10 33. KUABER 178 26.1025.60 - 26.00 - 26.50 26.1027.0527.35 26.9025.8025.40 - 26.1026.1026.2026.10 34. MECH 179 10.2710.20 9.97 9.9510.0510.07 10.1810.2510.60 10.6110.5511.05 11.0911.0511.0210.9511.1511.2511.35	_ 6.00 - 6.76 6.98 6.80 7.86 7.20 7.50 8.00 7.90 8.15 8.20.8.45 8.65	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
-13	010,90 030,80 030,80 828,42 7 8,89 7 8,89 026,10	5 8,2(1 1
ξΩ.	510.7 050.8 528.6 528.6 3 8.8 3 8.8	0 8.1	1 1
5	410.4 430.8 028.1 7 8.7 7 8.7	2.5	1 1
18	7710.5 7530.7 1028.1 72 8.6 72 8.6 72 8.6	90 8.0	1 1
-	7010.8 7530.7 71 8.7 71 8.7 9025.8	20 7.5	1 1 8
÷	0 10. 0 30. 1 27. 1 8. 5 26.	6 7.	0 12.
- - -	510.7 030.9 527.0 527.0 5 8.7	30 7.8	
3. 1	9410.0 5725.6 3127.8 11 8.2 1027.0	98 6.8	¥ 2241.9
12.	5 8.7.8 0 26.0	9 9	7 10.
13,	5 9 3 27 27 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3	6.7	37 8.6 21 9.0
10.	25 9.7 20.4 24 - 35 - 4	•	11 7.3
6	2.27.7	•	0 7.
	1 9.36 430.21 527.78 527.78 510.00	6.0	1 7.0 5 8.5
	7 9.2 530.2 427.5 8 7.4 0 8.4	1	46.8 27.7.7.
7	27.5	1	1 6.5
9	3 9 05 327.55 327.55 5 7.38 4.87	1	187 6,30 6,58 6,51 6,54 6,81 7,00 7,11 7,37 8,65 Dry 185 5,68 6,40 6,79 7,01 7,35 8,56 8,40 8,21 9,07 10,22;1,9511,50 12,90
2	5.9.48 830.99.48 627.66 5.5.23 710.23	0 6 0	6.0 9.0 9.0 8.0
4	27.77 7.44 7.44 10.2	5.2	5.6
3	165 14 167 14 171 14 171 175 179 179	181	187
2.	LLA BI BAKRA BAUTH DAHIY HARMU KHARA KUABI	ALMA 25,011, 181 5,20 6,00 -	36.SAILA 37.SANP-
~ :		**	* *

1, 2, 3, 4,	5.	ယံ	7.	ထံ	6	9	7	12		13.	14.	15. 1	16, 17,	82	19	20. 2	21, 22,	23.
PIEZOMETERS:			<u> </u>											£				
1. BAGORA/BHINMAL	•	1	1			1	1	1	7	53	4.52	4.39	94.4	4.59	89.4	7.90	5,06	
2 BALWARA/SAILA			:	•	•	•	•	ı	9	4	5 6.9	6,52			1		1	
3 BHAINSWARA/AHORE	1	25	1	•	1	•		1	€ €	8	18,52	18.17	16,40		<u>∞</u>	18.85	₩.	_
4 BHINMAL/BHINMAL	•		•		•	•	1		<u>ي</u>	85	7.03	6,43					6,78	
5 DASPA/BHINMAL	•	\$	1	t	•	•	1	ı	2 •	8	8,0	19.87			୍ଷ		2	
6 JATTPURA/RANTWARA	ŧ	ı	1		E				77	δ	14.11	14.14			5		5	
7 JAITFURA JOGNI/AHO	臣	•	•	•	1	1			-	2	2	₹. 8			Ę		5	
B KHANPUR/BHINMAL	ŧ	1	t 1	1	1	•			¢ •	8	8,39	8.15	7.47		<u></u>		œ	_
O KORLTE/JASWANTPURA	1	ı	:	ı	•	•	1	1	ω ι	4	8,59	8,10	7.54		~		ω.	_
IO. KUABER/SAILA	1	ı	1	1	•	1		1	- 24	Ŋ	7.	24.58	1		77		75	
11 WEDA/SANCHORE		1	1	1	ŧ			ı	۱ 5	5	15,23	15.13	15.40		5		-	
A2 MODERAN/BHINMAL	1		1	1	£			ı	1	8	12.06		1	11.35	•		7	
43 EINSERT/JASWANTPU	IR.	1	l i	١	1	•	1	•	- 1	3	4.52	4.16	3,83	3.91	4.13		4.35	
14 TIGHT JASWANTPURA		ı	1	1	ı			ī	ı		9.56	8,03			<u></u>		ç	_
15. PHI GOMPA / BHINMAI	26.15	126.14	26.13	1.25.1	::- ::-		:	1	ı	1	1	1	•	ı	1	•	•	
16. RAMATAHORE	6.85	7.84	8,02		27.3	· .!	•	:	;		9,53	φ	5.0	တံ	တံ	ത്.	တ	_
FT. BANIWARA/RANIWARA		1	1	Ĺ	5	•	3	•	1		11:19	<u>;</u>	11,88	÷	- -	Ë	¥	
AR SAILA/SAILA	i	ı	1	:	3	1	1	ı	٦		10,80	9	10.70	10,80		1 گ	11.20	_
19. SANKAD/SANCHORE	28.55	128.74	28.73	►	23.75	. <u>1</u>	1	ı	\$	29,22	29,15	8 7,	% %	బ్	స్ట	8	8	
20 SANKARNA/AHORE			1	ŧ	1	ı		1	1	¥	6,25	rυ	97.4	•		1	•	
21. UMEDPURA/AHORE 8.	8467		•		1	•		1	٠ 5	ଔ	15.72	15.29	15.34	15.84	16.04	16.39	16°2	_